62446 (695028)

Файл №695028 62446 (Использование дифференциальных уравнений, передаточных и частотных передаточных функций)62446 (695028)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра РТС

РЕФЕРАТ

На тему:

«Использование дифференциальных уравнений, передаточных и частотных передаточных функций»

МИНСК, 2008

Всякая система, рассматриваемая с точки зрения зависимости выходных и входных величин как функций времени, носит название динамической системы. Система слежения и ее отдельные звенья относятся к динамическим системам. Для исследования динамических систем используются временные и частотные методы.

Временные методы используют дифференциальные уравнения и полученные с их помощью передаточные функции, переходные и весовые функции.

Частотные – используют частотные передаточные функции и логарифмические частотные характеристики.

Временные методы используются при исследовании линейных нестационарных систем. Для стационарных систем предпочтительно применение частотных методов.

Задачей исследования системы является определение реакции системы на входное воздействие, либо определение параметров систем.

Использование дифференциальных уравнений

Для составления дифференциального уравнения (ДУ), связывающего входные и выходные величины в системе, составляют дифференциальные (или алгебраические) уравнения, для всех звеньев, входящих в систему, на основе физики происходящих в них процессов. Число таких дифференциальных уравнений равно числу звеньев системы. Затем, оставляя входную и выходную величины в качестве основных, избавляются от промежуточных величин, производя последовательную подстановку одного уравнения во второе. Для упрощения процесса подстановки уравнения записывают в сокращенной форме.

В общем виде ДУ можно записать следующим образом:

, при (1)

x2(t), x1(t) – выходные и входные величины соответственно; a,b – коэффициенты.

ДУ может быть записано в сокращенной форме.

Введем обозначение .

Теперь мы можем формально вынести за знак суммы значения x2(t) и x1(t).

или

(2)

дифференциальные полиномы.

,

или же можно записать в сокращенной форме:

,

где ─ операторный коэффициент передачи.

Приведенную форму записи определяют как алгебраизированную (символическую).

Общее решение ДУ определяет изменение во времени управляемой величины при заданном входном воздействии, и позволяет, таким образом, полностью описать процессы в следящей системе. Общее решение ДУ является суммой общего решения однородного ДУ, получаемого из уравнения (1) приравниванием нулю его правой части, и частного решения неоднородного ДУ.

Однородное ДУ определяет характер собственных колебаний в системе. Его решение позволяет исследовать систему на устойчивость.

Неоднородное ДУ определяет реакцию системы на внешние воздействия. Его решение позволяет оценить точность воспроизведения задающего воздействия.

Использование передаточных функций

Для получения алгебраической формы записи надо перейти в область изображений по Лапласу.

Пусть система описывается уравнением (3.1) .

Применим преобразование Лапласа к обеим частям уравнения (1), учитывая, что:

,

где ─ переменная Лапласа;

и при нулевых начальных условиях (* .

,

отсюда найдем х2

,

где W(s) – передаточная функция ─ реакция системы на входное воздействие в области изображений Лапласа.

Таким образом, передаточная функция W(s) определяется как отношение изображений по Лапласу выходной и входной величин при нулевых начальных условиях.

В последующем изложении W(s) и W(p) мы будем именовать передаточной функцией, имея в виду, что s- комплексная переменная, а p- оператор дифференцирования.

В данном случае мы получили алгебраическую форму записи ДУ. Формально она может быть получена из упрощенной символической формы заменой оператора дифференцирования на переменную s и оригиналов на изображения:

Для нахождения оригинала может быть использовано обратное преобразование Лапласа:

.

Обратное преобразование выполняют путем разложения изображения на простейшие дроби и последующего использования таблиц.

Использование переходной и весовой функций

Переходной функцией называют реакцию системы на ступенчатую единичную функцию, которую определяют как 1(t) (рис. 3.1):

.

Рис. 1. Единичная ступенчатая функция

Переходная функция используется при исследовании переходных режимов следящих систем. Переходная характеристика – графическое изображение переходной функции. Типовые переходные характеристики следящих систем изображены на рис. 2.

Устойчивые системы

Неустойчивые системы

Рис. 2. Переходные характеристики

Переходная характеристика может быть найдена аналитически. Запишем реакцию системы на 1(t) в виде ДУ в сокращенной форме:

,

где W(p) – операторный коэффициент передачи.

Перейдя в область изображений по Лапласу, получим следующие выражения:

Осуществив обратное преобразование Лапласа, получим переходную функцию q(t).

.

Весовая функция (импульсная характеристика) – реакция системы на воздействие в виде δ-функции, определяемой как

.

Отметим некоторые свойства δ-функции:

;

.

Весовая функция h(t) равна:

.

Переходя в область изображений, получим следующие выражения:

Таким образом, весовая и передаточная функции связаны преобразованием Лапласа.

Весовая функция используется для определения выходной величины с помощью интеграла Дюамеля:

. (3)

В соответствии с условием физической реализуемости: реакция системы на входное воздействие появляется не раньше воздействия, т. е

, при t<0,

можно записать:

. (4)

Для определения установившегося значения можно полагать, что воздействие началось в момент и для расчета использовать выражение:

.

Использование частотных передаточных функций

Частотная передаточная функция (комплексный коэффициент передачи) определяет реакцию системы на гармоническое входное воздействие и используется для анализа следящих систем. Ее можно найти, используя ДУ (3.1), если полагать, что – гармоническое воздействие в комплексной форме определяется выражением

, (5)

где - комплексная амплитуда.

Будем искать частное решение неоднородного ДУ (1) в виде:

, (6)

где .

Подставляя (3.5), (3.6) в (3.1) и учитывая, что

,

получим:

,

где ─ частотная передаточная функция (комплексный коэффициент передачи).

Частная передаточная функция – это отношение комплексных амплитуд входных и выходных гармонических воздействий при нулевых начальных условиях.

W(jω) можно получить формально из W(s), заменой s на jω.

W(jω)можно представить а показательной и алгебраической форме:

- модуль частотной передаточной функции.

W(jω) на комплексной плоскости изображается в виде вектора. При изменении частоты в интервале ( ) конец вектора прочерчивает кривую, называемую амплитудно-фазовой характеристикой (АФХ) (рис. 3).

Рис. 3. Амплитудно-фазовая характеристика

– амплитудно-частотная характеристика (АЧХ).

АЧХ – зависимость амплитуды выходного сигнала от частоты при неизменной амплитуде входного сигнала.

─ фазочастотная характеристика (ФЧХ).

ФЧХ определяет зависимость фазового сдвига выходного сигнала относительно входного от частоты. Она симметрично относительно начала координат.

Годограф – кривая, прочерчиваемая концом вектора, при изменении частоты ω в интервале ( ).

ЛИТЕРАТУРА

1. Коновалов. Г.Ф. Радиоавтоматика: Учебник для вузов. – М.: Высш.шк., 2000.

2. Радиоавтоматика: Учеб. пособие для вузов./ Под ред. В.А. Бесекерского.- М.: Высш. шк., 2005.

3.. Первачев. С.В Радиоавтоматика: Учебник для вузов.- М.: Радио и связь, 2002.

4. Цифровые системы фазовой синхронизации/ Под ред. М.И. Жодзишского – М.: Радио, 2000

Характеристики

Тип файла
Документ
Размер
987 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее