rek_vols (694808), страница 5
Текст из файла (страница 5)
— коэффициент затухания, обусловленный рэлеевским рассеиванием на неоднородностях материала ОВ, размеры которых значительно меньше длины световой волны, и тепловыми флуктуациями показателя преломления. Этот вид рассеяния определяет теоретическую границу, ниже которой затухание не может быть уменьшено и в современных ОВ является основным источником потерь в рабочих областях спектра. Рэлеевское рассеяние вызывается рассеянием на неоднородностях показателя преломления, возникших в расплавленном кварце в связи с локальными термодинамическими флуктуациями концентрации молекул (плотности) кварца из-за их хаотического движения в расплавленном состоянии. При затвердевании волокна неоднородности, возникшие в расплавленной фазе, застывают в структуре кварцевого стекла. Колебания плотности приводят к случайным флуктуациям показателя преломления в масштабе, меньшем, чем длина световой волны
.
— коэффициент затухания, вызванный присутствующими в ОВ примесями, приводящими к дополнительному поглощению оптической мощности, это ионы металлов (Fe, Cu, Ni, Mn, Cr), вызывающие поглощение в диапазоне длин волн 0,6-1,6 мкм, и гидроксильные группы (ОН), из-за которых появляются резонансные всплески затухания
на длинах волн 0,75 мкм, 0, 97 мкм и 1,39 мкм.
— дополнительные потери, определяемые деформацией ОВ в процессе изготовления кабеля, вызванной скруткой, изгибом, отклонением от прямолинейного расположения и термомеханическими воздействиями, имеющими место при наложении оболочек и покрытий на сердцевину волокна при изготовлении ОК (их называют кабельными).
— коэффициент затухания, зависящий от длины волны оптического излучения и за счет поглощения в инфракрасной области возрастающий в показательной степени с ростом длины волны.
В настоящее время в технике связи в основном применяются кварцевые ОВ, область эффективного использования которых находится в диапазоне длин волн до 2 мкм. На более длинных волнах в качестве материала для волокна используются галоидные, халькогенидные и фторидные стекла. По сравнению с кварцевыми волокнами они обладают большей прозрачностью и обеспечивают снижение потерь на несколько порядков. С появлением ОВ из новых материалов становится реальным создание ВОЛС без ретрансляторов.
Затухание оптического волновода учитывается при расчете энергетического бюджета.
Затухание оптоволоконной линии с учетом потерь на разъемных соединениях и сростках (неразъемных соединениях) определяется по формуле:
где и
- значение потерь на сростке и разъеме соответственно,
и
- количество сростков и разъемных соединений на протяжении оптоволоконной линии длиной L,
- километрический коэффициент затухания оптического волокна, измеряемый в дБ/км.
Тогда энергетический бюджет рассчитывается по формуле:
где и
- мощность источника оптического излучения и чувствительность фотоприемника в дБ соответственно;
и
- эксплуатационный запас для аппаратуры и для кабеля, (дБ), которые берутся из технических условий (контрактных спецификаций) для оборудования ВОЛС.
3.2. Дисперсия
Световой сигнал в цифровых системах передачи поступает в световод импульсами, которые вследствие некогерентности реальных источников излучения содержат составляющие с различной частотой. Уширение светового импульса, вызываемое различием времени распространения его спектральных и поляризационных компонент, и называется дисперсией.
Световая волна, распространяющаяся вдоль направления x, описывается уравнением:
где А - амплитуда световой волны; - ее угловая частота, k - волновое число.
Если взять фиксированное значение фазы волны:
то скорость перемещения фазы в пространстве или фазовая скорость будет:
Световой импульс, распространяющийся в ОВ представляет собой суперпозицию электромагнитных волн с частотами, заключенными в интервале Δ , которая называется группой волн вида (3.2.1). В момент времени t в разных точках для разных x волны будут усиливать друг друга, что приводит к появлению максимума интенсивности группы волн (центр группы волн), или ослаблять. Центр группы волн перемещается со скоростью:
называемой групповой. Заменив k=2π/λ и выразив , получим соотношение, выражающее зависимость групповой скорости от длины волны:
Это и является причиной, приводящей к различию скоростей распространения частотных составляющих излучаемого спектра по оптическому волокну. В результате по мере распространения по оптическому волокну частотные составляющие достигают приемника в разное время. Вследствие этого импульсный сигнал на выходе ОВ видоизменяется, становясь «размытым». Это явление называется волноводной дисперсией, определяемой показателем преломления ОВ и шириной спектра излучения источника Δλ и имеющей размерность времени [5]:
где Δ - относительная разность показателей преломления сердцевины и оболочки, L - длина ОВ, - коэффициент волноводной дисперсии, называемый удельной волноводной дисперсией. Зависимость удельной волноводной дисперсии от длины волны показана на рис. 3.2.
Скорость распространения волны зависит не только от частоты, но и от среды распространения. Для объяснения этого явления электроны внутри атомов и молекул рассматриваются в теории дисперсии квазиупруго связанными. При прохождении через вещество световой волны каждый электрон оказывается под воздействием электрической силы и начинает совершать вынужденные колебания. Колеблющиеся электроны возбуждают вторичные волны, распространяющиеся со скоростью с, которые, складываясь с первичной, образуют результирующую волну. Эта результирующая волна распространяется в веществе с фазовой скоростью v, причем, чем ближе частота первичной волны к собственной частоте электронов, тем сильнее будут вынужденные колебания электронов и различие между v и c будет больше, что объясняет зависимость . В результате смещения электронов из положений равновесия молекула вещества приобретает электрический дипольный момент. То есть при взаимодействии электромагнитной волны со связанными электронами отклик среды зависит от частоты светового импульса, что и определает зависимость показателя преломления от длины волны, которая характеризует дисперсионные свойства оптических материалов:
где N - плотность частиц (число частиц в единице объема), m и е – масса и заряд электрона соответственно, - резонансные длины волн,
- вынуждающие осцилляции электрические силы. В широком спектральном диапазоне, включающем обычный ультрафиолет, видимую область и ближнюю инфракрасную область, кварцевое стекло прозрачно и данная формула Солмейера применима с очень высокой точностью [5, 7].
Явление, возникновение которого связано с характерными частотами, на которых среда поглощает электромагнитное излучение вследствие осцилляции связанных электронов, и которое определяет уширение длительности светового импульса после его прохождения через дисперсионную среду, называется в технике волоконно-оптической связи материальной дисперсией [5]:
где коэффициент М(λ) называется удельной материальной дисперсией. На длине волны λ = 1276 нм у кварца величина , следовательно коэффициент материальной дисперсии M(λ) = 0 (см. рис. 3.2). При длине волны λ > 1276 нм M(λ) меняет знак и принимает отрицательные значения, в результате чего на длине волны (примерно 1310 ± 10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация М(λ) и N(λ). Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии
. Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться
для данного конкретного оптического волокна.
Результирующая дисперсия складывается из волноводной и материальной и называется хроматической дисперсией. Дисперсию в оптических волокнах принято характеризовать коэффициентом дисперсии или удельной дисперсией, измеряемом в пс/(нм·км). Коэффициент дисперсии численно равен увеличению длительности светового импульса (в пикосекундах), спектральная ширина которого равна 1 нм, после прохождения отрезка ОВ длиной 1 км. Значение коэффициента хроматической дисперсии определяется как D(λ) = М(λ) + N(λ). Удельная дисперсия имеет размерность пс/(нм·км).
Р
ис. 3.2. Зависимости коэффициентов волноводной, материальной и результирующей хроматической дисперсии от длины волны.
При допущениях, которые исходят из результатов опытов для различных веществ, из выражения (3.2.7) может быть получена приближенная формула зависимости показателя преломления от длины волны:
где a, b и c - постоянные, значения которых определяются экспериментально для каждого вещества.
Для одномодового ступенчатого и многомодового градиентного оптических волокон для расчета дисперсии применима эмпирическая формула Селмейера [5]: