Diplom (694711), страница 5

Файл №694711 Diplom (Классификация сейсмических сигналов на основе нейросетевых технологий) 5 страницаDiplom (694711) страница 52016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Рассмотрим основной руководящий принцип, общий для всех этапов предобработки данных. Допустим, что в исходные данные представлены в числовой форме и после соответствующей нормировки все входные и выходные переменные отображаются в единичном кубе. Задача нейросетевого моделирования – найти статистически достоверные зависимости между входными и выходными переменными. Единственным источником информации для статистического моделирования являются примеры из обучающей выборки. Чем больше бит информации принесет пример – тем лучше используются имеющиеся в нашем распоряжении данные.

Рассмотрим произвольную компоненту нормированных (предобработанных) данных: . Среднее количество информации, приносимой каждым примером , равно энтропии распределения значений этой компоненты . Если эти значения сосредоточены в относительно небольшой области единичного интервала, информационное содержание такой компоненты мало. В пределе нулевой энтропии, когда все значения переменной совпадают, эта переменная не несет никакой информации. Напротив, если значения переменной равномерно распределены в единичном интервале, информация такой переменной максимальна.

Общий принцип предобработки данных для обучения, таким образом состоит в максимизации энтропии входов и выходов.

5.2 Нормировка данных.

Как входами, так и выходами могут быть совершенно разнородные величины. Очевидно, что результаты нейросетевого моделирования не должны зависеть от единиц измерения этих величин. А именно, чтобы сеть трактовала их значения единообразно, все входные и выходные величин должны быть приведены к единому масштабу. Кроме того, для повышения скорости и качества обучения полезно провести дополнительную предобработку, выравнивающую распределения значений еще до этапа обучения.

Индивидуальная нормировка данных.

Приведение к единому масштабу обеспечивается нормировкой каждой переменной на диапазон разброса ее значений. В простейшем варианте это – линейное преобразование:

в единичный отрезок: . Обобщение для отображения данных в интервал , рекомендуемого для входных данных тривиально.

Линейная нормировка оптимальна, когда значения переменной плотно заполняют определенный интервал. Но подобный «прямолинейный» подход применим далеко не всегда. Так, если в данных имеются относительно редкие выбросы, намного превышающие типичный разброс, именно эти выбросы определят согласно предыдущей формуле масштаб нормировки. Это приведет к тому, что основная масса значений нормированной переменной сосредоточится вблизи нуля Гораздо надежнее, поэтому, ориентироваться при нормировке не а экстремальные значения, а на типичные, т.е. статистические характеристики данных, такие как среднее и дисперсия.

, где

,

В этом случае основная масса данных будет иметь единичный масштаб, т.е. типичные значения все переменных будут сравнимы (рис. 6.1)


Однако, теперь нормированные величины не принадлежат гарантированно единичному интервалу, более того, максимальный разброс значений заранее не известен. Для входных данных это может быть и не важно, но выходные переменные будут использоваться в качестве эталонов для выходных нейронов. В случае, если выходные нейроны – сигмоидные, они могут принимать значения лишь в единичном диапазоне. Чтобы установить соответствие между обучающей выборкой и нейросетью в этом случае необходимо ограничить диапазон изменения переменных.

Линейное преобразование, представленное выше, не способно отнормировать основную массу данных и одновременно ограничить диапазон возможных значений этих данных. Естественный выход из этой ситуации – использовать для предобработки данных функцию активации тех же нейронов. Например, нелинейное преобразование

,

нормирует основную массу данных одновременно гарантируя что (рис. 5.2)


Как видно из приведенного выше рисунка, распределение значений после такого нелинейного преобразования гораздо ближе к равномерному.

Все выше перечисленные методы нормировки направлены на то, чтобы максимизировать энтропию каждого входа (выхода) по отдельности. Но, вообще говоря, можно добиться гораздо большего максимизируя их совместную энтропию. Существуют методы, позволяющие проводить нормировку для всей совокупности входов, описание некоторых из них приведено в [4].

6.3 Понижение размерности входов.

Поскольку заранее неизвестно насколько полезны те или иные входные переменные для предсказания значений выходов, возникает соблазн увеличивать число входных параметров, в надежде на то, что сеть сама определит, какие из них наиболее значимы. Однако чаще всего это не приводит к ожидаемым результатам, а к тому же еще и увеличивает сложность обучения. Напротив, сжатие данных, уменьшение степени их избыточности, использующее существующие в них закономерности, может существенно облегчить последующую работу, выделяя действительно независимые признаки. Можно выделить два типа алгоритмов, предназначенных для понижения размерности данных с минимальной потерей информации:

  • Отбор наиболее информативных признаков и использование их в процессе обучения нейронной сети;

  • Кодирование исходных данных меньшим числом переменных, но при этом содержащих по возможности всю информацию, заложенную в исходных данных.

Рассмотрим более подробно оба типа алгоритмов.

5.3.1 Отбор наиболее информативных признаков.

Для того, чтобы понять какие из входных переменных несут максимум информации, а какими можно пренебречь необходимо либо сравнить все признаки между собой и определить степень информативности каждого из них, либо пытаться найти определенные комбинации признаков, которые наиболее полно отражают основные характеристики исходных данных.

В разделе 3.2 был описан алгоритм, позволяющий упорядочить все признаки по мере убывания их значимости. Однако накладываемые ограничения не позволяют применять его для более распространенных задач.

Для выбора подходящей комбинации входных переменных используется так называемые генетические алгоритмы [5], которые хорошо приспособлены для задач такого типа, поскольку позволяют производить поиск среди большого числа комбинаций при наличии внутренних зависимостей в переменных.

5.3.2 Сжатие информации. Анализ главных компонент.

Самый распространенный метод понижения размерности - это анализ главных компонент (АГК).

Традиционная реализация этого метода представлена в теории линейной алгебры. Основная идея заключается в следующем: к данным применяется линейное преобразование, при котором направлениям новых координатных осей соответствуют направления наибольшего разброса исходных данных. Для эти целей определяются попарно ортогональные направления максимальной вариации исходных данных, после чего данные проектируются на пространство меньшей размерности, порожденное компонентами с наибольшей вариацией [4]. Один из недостатков классического метода главных компонент состоит в том, что это чисто линейный метод, и соответственно он может не учитывать некоторые важные характеристики структуры данных.

В теории нейронных сетей разработаны более мощные алгоритмы, осуществляющие “нелинейный анализ главных компонент”[3]. Они представляют собой самостоятельную нейросетевую структуру, которую обучают выдавать в качестве выходов свои собственные входные данные, но при этом в ее промежуточном слое содержится меньше нейронов, чем во входном и выходном слоях. (рис 5.3). Сети подобного рода носят название – автоассоциативные сети.


Чтобы восстановить свои входные данные, сеть должна научиться представлять их в более низкой размерности. Базовый алгоритм обучения в этом случае носит название правило обучения Ойя для однослойной сети. Учитывая то, что в такой структуре веса с одинаковыми индексами в обоих слоях одинаковы, дельта-правило обучения верхнего (а тем самым и нижнего) слоя можно записать в виде:

, где

,

, j=1,2,…,d – компонента входного вектора;

, выходы сети j=1,…,d;

d - количество нейронов на входном ми выходном слоях (размерность вектора признаков);

yi - выход с i-го нейрона внутреннего слоя, i=1,…,M

M – количество нейронов на внутреннем слое;

  • - коэффициент обучения;

wij=wkj - веса сети , соответственно между входным – скрытым и скрытым – выходным слоями.

Скрытый слой такой сети осуществляет оптимальное кодирование входных данных, и содержит максимально возможное при данных ограничениях количество информации. После обучения внешний интерфейс (wij) (рис.5.4) может быть сохранен и использован для понижения размерности.


Нелинейный анализ главных компонент.

Главное преимущество нейроалгоритмов в том, что они легко обобщаются на случай нелинейного сжатия информации, когда никаких явных решений уже не существует. Можно заменить линейные нейроны в описанных выше сетях – нелинейными. С минимальными видоизменениями нейроалгоритмы будут работать и в этом случае, всегда находя оптимальное сжатие информации при наложенных ограничениях. Например, простая замена линейной функции активации нейронов на сигмоидную в правиле обучения Ойя:

Характеристики

Тип файла
Документ
Размер
1,06 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее