147235 (691808)
Текст из файла
Содержание
Введение
1. Определение основных параметров тепловоза
2. Выбор конструкции экипажной части тепловоза
2.1. Кузов тепловоза
2.2. Главная рама
2.3. Кабина машиниста
2.4. Конструктивные особенности тележки
2.5. Рама тележки
2.6. Опорно-возвращающее устройство и устройство передачи силы тяги
2.7. Тяговый редуктор
2.8 Ударно-тяговое устройство
2.9. Тяговые электродвигатели
2.10. Колёсная пара
3. Выбор оборудования и его компоновка на тепловозе
4. Определение тяговой характеристики
5. Индивидуальное задание
Список используемой литературы
Введение
Магистральный двухсекционный тепловоз 2ТЭ116 предназначен для грузовой работы на железных дорогах РФ и стран СНГ с шириной колеи 1520 мм, сконструирован производственным объединением (ПО) «Ворошиловградский тепловозостроительный завод» совместно с ПО «Коломенский тепловозостроительный завод», «Завод имени Малышева», «Электротягмаш», электромашина (г. Харьков) и научно-производственными объединениями: ВНИТИ (г. Коломна) и ВНИИЖТ (г. Москва).
На этих тепловозах применены экономичные четырехтактные дизели; электрическая передача переменно-постоянного тока; полупроводниковая система автоматического регулирования возбуждения; электрический привод вентиляторов тепловоза, охлаждения выпрямительной установки и тяговых двигателей; развитая система очистки воздуха охлаждения электрических машин со степенью очистки до 80%; тяговая передача с упругой ведомой шестерней; бесчелюстная тележка с повышенным коэффициентом использования сцепного веса. Тепловоз состоит из двух одинаковых однокабинных секций, управляемых с одного (любого) пульта кабины. При необходимости каждая секция может быть использована, как самостоятельная тяговая единица.
Технические данные тепловоза.
Год постройки первого тепловоза: 1971.
Изготовитель: Ворошиловградский завод.
Осевая формула: 2(30 – 30)
Мощность по дизелю, кВт: 2*2250.
Служебная масса, т: 2*138.
Осевая нагрузка, кН: 226.
Конструкционная скорость, км/ч: 100.
Сила тяги длительного режима,, кН: 2*255.
Скорость длительного режима км/ч: 24.
Удельный эффективный расход топлива г/кВт*ч: 208.
Тип передачи мощности: Переменно- постоянного тока.
Длинна по осям автосцепок, мм: 36300.
Диаметр колес, мм: 1050.
При выполнении курсовой работы необходимо рассчитать или выбрать:
-
Основные параметры проектируемого тепловоза;
-
Конструкцию узлов экипажной части тепловоза;
-
Компоновку силового и вспомогательного оборудования на тепловозе и произвести его развеску;
-
Тяговую характеристику проектируемого тепловоза;
-
Выполнить геометрическое вписывание тепловоза в кривую.
-
Определение основных параметров тепловоза
Исходные данные:
Мощность Ne, Квт: 2200;
Число секций: 2;
Нагрузка (2П), кН : 230;
Тип передачи: электрическая (переменно-постоянного тока)
Минимальный радиус проходимой кривой: 125 м.
-
Определение сцепного веса секции
Сцепной вес локомотива – сумма нагрузок на рельсы от всех ведущих колес локомотива при 80% запасах песка и топлива. Сцепной вес секции тепловоза зависит от допустимой статической нагрузки от оси на рельсы (2П), числа осей секции локомотива и его рода службы, (кН).
где: а – коэффициент, учитывающий род службы локомотива, для грузовых тепловозов он составляет а=1.
2П – допустимая статическая нагрузка от оси колесной пары на
рельсы, КН;
nос= число сцепных осей секции, принимаем в соответствии с колесной формулой локомотива.
1.2. Определение диаметра движущих колес
Определяется величиной допустимых контактных напряжений на единицу длинны диаметра колеса, мм.
где: 2П – допустимая статическая нагрузка от оси колесной пары на рельсы, КН;
2р – допустимая удельная нагрузка на 1 мм длинны диаметра колеса, мм принимается для грузовых локомотивов 2р=0,24-0,27 кН/мм.
Полученная расчетная величина Дк унифицируется, т.е. приводится к стандартным диаметрам бандажей новых колес. В соответствии с ГОСТ 25463-82 диаметры новых колес для тепловозов составляют 1050 и 1220 мм.
Принимаем: Дк=1050 мм.
1.3 Определение длинны секции проектируемого тепловоза LT
Длинна секции проектируемого тепловоза по осям автосцепок LT (рис.1) пропорциональна эффективной мощности силовой установки Ne.
Предварительно величина LT может быть определена с помощью следующих эмпирических зависимостей, мм
LT=Ne*(10-0,0012*Ne)
При проектировании локомотива должно выполняться следующее условие: LTmin≤ LT≤ LTmax,
где: LTmin – минимальная длинна секции тепловоза;
LTmax – максимальная длинна секции тепловоза.
Минимальная длинна секции тепловоза может быть определенна из следующего выражения:
,
где: qn – предельно допустимая нагрузка на 1 метр пути, кН/м; для магистральных железных дорог можно принять qn=73,5 кН/м.
Максимальная длинна секции тепловоза LTmax по осям автосцепок в соответствии с ГОСТ 25463-82 и техническими требованиями на магистральные тепловозы с мощностью энергетической установки 2500-3500 кВт в одной секции с электрической передачей устанавливается не более 22800 мм.
LT=2200*(10-0,0012*2200)=16192(мм)
18775(мм) ≤16192(мм) ≤22800(мм)
Так как полученная длинна меньше минимально допустимой, то возьмем длину тепловоза равной 18800 (мм).
1.4 Определение длинны базы секции тепловоза Lб
Предварительно, база секции тепловоза может быть установлена из следующего выражения, мм
Lб=e* LT,
Где: е – эмпирический коэффициент; принимается равным для тепловозов с трёхосными тележками и длинной до 20 м е=0,-0,52.
Lб=0,5*18800=9400(мм)
1.5 Определение длины основных элементов кузова
Длина основных элементов кузова и подкузовных частей проектируемого магистрального тепловоза связаны между собой уравнением габаритного баланса локомотива:
nk*Lk+Lмаш+Lхол=nt*Lt+2Lсв+Lмт,
где: Lk – длина кабины машиниста, мм;
Lмаш – длина машинного отделения, мм;
Lхол – длина холодильника, мм;
Lt – длина тележки, мм;
Lсв – длина свеса рамы локомотива относительно наружных габаритов тележки, мм;
Lмт – длина межтележечного пространства, мм;
nk - число кабин машиниста секции тепловоза;
nt – число тележек секции тепловоза.
Длина машинного отделения Lмаш зависит от мощности и габаритных размеров силовой установки тепловоза, м:
Длина кабины машиниста Lk с учётом норм техники безопасности и производственной санитарии может быть принята равной 2 метрам.
Длина тележки зависит в первую очередь от осевой формулы, а также типа привода колесных пар и эффективной мощности силовой установки. В первом приближении длину тележки можно определить из следующего выражения:
Lt=(1,7÷1,9)*n0,
Где: n0 – число сцепных осей в тележке.
Lt=1,9*3=5,7(м)
Длина холодильника может быть определена из следующего эмпирического выражения:
Lхол=5,6*10-4*Ne+1,14
Lхол=5,6*10-4*2200+1,14=2,4(м)
Длину свеса рамы локомотива Lсв можно принять равной Lсв=1,25(м)
Длина межтележечного пространства Lмт зависит от емкости топливного бака тепловоза и первоначально может быть определена из уравнения:
Lмт= nk*Lk+ Lмаш+ Lхол- ntLt-2Lcв
Lмт=2+14,4+2,4-2*5,7-2*1,25=4,9(м)
1*2+14,4+2,4=5,7*2+2*1,25+4,9
18,8=18,8
1.6 Выбор ширины и высоты проектируемого тепловоза
Максимальная ширина строительного очертания локомотива Вл ограничена габаритом подвижного состава 1-Т (ГОСТ 9238-83) и может быть принята равной Вл=3400 мм. Высота строительного очертания локомотива Нл определяется от уровня верха головки рельса. В соответствии с габаритом подвижного состава 1-Т максимальное значение величины Нл составляет 5300 мм.
-
Выбор конструкции экипажной части тепловоза
Элементы относящиеся к экипажной части локомотива представлены в виде таблицы на рисунке 1.
Рама тележки
Рис.1.
2.1 Кузов тепловоза
Кузов и главная рама тепловоза предназначены для размещения локомотивной бригады, силового и вспомогательного оборудования, устройств управления локомотивом. Конструкция главной рамы и кузова определяется родом службы локомотива, компоновкой оборудования, способом восприятия и передачи нагрузок, производственно – технологическими условиями изготовления и эксплуатации локомотива. Поэтому к кузову и главной раме предъявляют высокие требования по жесткости, прочности и надёжности.
Для отечественных тепловозов применяют кузова вагонного (закрытого) и капотного типа. Кузова вагонного типа применяют на магистральных, а капотного на маневровых тепловозах. Кузов тепловоза 2ТЭ116 вагонного (закрытого типа).
На отечественных тепловозах применяют две основные конструкции кузовов: с несущей рамой и цельнонесущие. В кузовах с несущей рамой расчет главной рамы ведется на все нагрузки, т.е. не учитывается частичное восприятие этих нагрузок стенками кузова. У цельнонесущих кузовов необходимая несущая способность для восприятия нагрузок достигается совместной работой всех его элементов, включая и раму как его составную часть. Кузов тепловоза 2ТЭ116 выполнен с несущей рамой и состоит из главной (несущей) рамы, кабины машиниста с проставкой, кузова над дизелем и охлаждающего устройства.
2.2 Главная рама
Для восприятия веса оборудования, находящегося в кузове тепловоза, передачи тягового усилия, тормозных сил, динамических и ударных нагрузок, возникающих при движении тепловоза, предназначена главная рама тепловоза (Рис. 2). При проектировании рамы стремятся обеспечить наибольшую надежность, прочность и жесткость при наименьшей металлоемкости. Важные требования к конструкции рамы: удобство компоновки рамы оборудования, технологичность изготовления, обслуживания и ремонта. Практически невозможно добиться полного удовлетворения одного из этих показателей, не ухудшив другие. Например уменьшение металлоемкости конструкции связано с опасностью уменьшения её несущей способности. Компромисионные решения следует искать из технико-экономического анализа. Наиболее приемлемым при этом будет считаться то конструктивное решение при котором можно добиться наибольшего экономического эффекта при эксплуатации локомотива.
Основными несущими элементами рамы являются две хребтовые балки, выполненные из двутавров, усиленных приваренными к нижним и верхним полкам усиливающими полосами толщиной 18 мм и скрепленных
стяжными ящиками и, приваренными к нижним усиливающим полосам. К задним и передним торцам хребтовых балок приварены лобовые листы толщиной 14 мм, в которые стяжные ящики упираются своими буртами. Стяжные ящики представляют собой литые пустотелые конструкции. Для увеличения жесткости рамы хребтовые балки соединены между собой поперечными диафрагмами толщиной 8 мм. С левой и правой сторон в средней части рамы для увеличения ее несущей способности в месте ее наибольшего нагружения (установка дизеля, бака для топлива, аккумуляторных батарей) в раму вварены две фермы. Рама сверху по всей своей поверхности, кроме центральной части, где выполнен поддон для дизеля, зашита настилом.
Рис. 3. главная рама кузова
1,6-стяжные ящики; 2-опора; 3-обносной швеллер; 4-ферма; 7-шкворневые кольца; 8-шквореня; 9-хребтовые балки; 10-место под установку верхних элементов опорно-возращающих устройств; I 1 -штампованные желоба.
В зоне установки передних и задних элементов опорно-возвращающих устройств тепловоза приварены четыре опоры 2 под домкраты для подъемки надтележечного строения тепловоза. В раме также выполнены (вварены) каналы сварной конструкции для подвода воздуха на наддув к тяговым электродвигателям передней и задней тележек, а также каналы для наддува к
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















