146963 (691723), страница 3
Текст из файла (страница 3)
Для масла при температуре 80,0 С плотность , теплоёмкость
, коэффициент теплопроводности
, коэффициент кинематической вязкости
.
3.4.5 Выбираем скорость движения охлаждающей воды в трубках теплообменника в пределах 1,3...2,5 м/с. Принимаем
.
3.4.6 Определяем число Рейнольдса , критерии Прандтля
(характеризует физические свойства теплоносителей) и Нуссельта
(характеризует интенсивность или режим теплоотдачи) для воды при температуре
.
.
3.4.7 Находим коэффициент теплопередачи от внутренней стенки трубки к воде
3.4.8 Выбираем скорость движения масла Vм между перегородками теплообменника в пределах 1,2...2,0 м/с. Принимаем Vм=1,6 м/с.
3.4.9 Рассчитываем и
при средней температуре масла в теплообменнике
3.4.10 Из условия, что температура стенки трубки принимаем
.
3.4.11 При температуре стенки трубки находим критерии Прандтля и Нуссельта
, где
В – эмпирический коэффициент. В нашем случае он равен 0,3.
3.4.12 Находим ориентировочное значение коэффициента теплоотдачи от масла к стенке трубки при температуре стенки
3.4.13 Определяем расчетное значение температуры стенки трубки
.
Если ( в пределах 2ºС), то принимаем
Если значительно отличаются, то необходимо задаться новым значением
и повторить расчет до получения сходимости значений
.
Таким образом, разница между составляет 1ºС и расчёт можно продолжить.
3.4.14 Рассчитываем коэффициент теплопередачи от масла к охлаждающей воде
3.4.15 Определяем расчётный температурный напор Δt между маслом и водой
3.4.16 Находим предварительное значение расчетной поверхности охлаждения теплообменника
Учитывая возможность загрязнения, увеличиваем расчётную поверхность теплообменника в 1,1 раз. Тогда
3.4.17 Рассчитываем число трубок в теплообменнике
3.4.18 Коэффициент заполнения трубной доски должен находиться в пределах . Принимаем
3.4.19 Рассчитываем внутренний диаметр кожуха теплообменника или диаметр трубной доски
3.4.20 Находим расстояние между трубными досками теплообменника
.
3.4.21 Рассчитываем живое сечение для прохода масла между перегородками теплообменника
3.4.22 Находим величину площади сегмента над перегородками
3.4.23 Находим величину S хорды сегмента над перегородкой
. Величина центрального угла
зависит от отношения
. В рассматриваемом случае величина
. Величина центрального угла
в соответствии с табличными данными составляет 114º. Рассчитываем величину хорды S
3.4.24 Ширина осреднённого сечения b для прохода масла над (или под) сегментными перегородками, в соответствии со схемой составляет
3.4.25 Расстояние между сегментными перегородками
3.4.26 Число ходов масла в водомасляном теплообменнике между сегментными перегородками
Принимаем
=14 ходов.
3.4.27 Находим окончательную длину трубок между трубными досками, учитывая толщину сегментных перегородок
Принимаем расчетную длину теплообменника 2,7м. Конструктивно теплообменник будет выполняться их двух блоков, длиной 1,35 м.
3.4.28 Чтобы найти гидросопротивление масляного тракта теплообменника рассчитаем число рядов трубок
, перпендикулярных потоку масла.
Находим отношение и по графику находим величину С (см. рис 3.7. методич. указ.); С=10.
С учетом загрязнений
3.4.29 Гидравлическое сопротивление водяного тракта теплообменника составит
Величина коэффициента определяется в зависимости от принятой скорости
и температуры воды в трубках по графику (см. рис. 3.9. методич. указ.). Принимаем величину
.
3.4.30 Определяем расход мощности на привод водяного и масляного
насосов
Принимая, как и ранее, двукратный запас мощности на привод насосов, окончательно получим и
.
3.5 Компоновка охлаждающего устройства проектного тепловоза и выбор вентиляторов
Для выбора типа, размеров и необходимой производительности одного или нескольких вентиляторов необходимо предварительно наметить количество шахт холодильника и определить размеры фронта радиаторов в каждой шахте.
Находим фронтальные размеры шахты при использовании стандартных радиаторов с активной длиной секции 1206мм. Всего в двух контурах охлаждения 34 секции радиаторов. Значит с одной стороны шахты будет установлено 17 секций. Тогда
При проектировании тепловозов вентиляторы холодильника выбираются из числа выпускаемых промышленностью. Поскольку тепловозные холодильники характеризуются значительными величинами расходов воздуха и сравнительно небольшими аэродинамическими сопротивлениями воздушных трактов, то для обеспечения этих условий наилучшими являются осевые вентиляторы. Они компактнее, легче, проще по конструкции, а главное, экономичнее центробежных вентиляторов.
Число вентиляторов, обслуживающих каждую шахту, и диаметр рабочего колеса выбирается из условия наилучшего обдувания секций радиатора воздухом и возможности размещения вентилятора. Расчет вентилятора в этом случае позволяет определить его частоту вращения и угол установки лопастей, при котором к.п.д. вентилятора будет наибольшим. Определяется также и величина мощности, затрачиваемой на привод вентилятора.
Учитывая величину фронтальной поверхности проектируемого холодильника выбираем для охлаждения секций два вентилятора. Диаметр рабочего колеса вентилятора находится с учетом технологических и конструктивных допусков на установку в виде
К расчету принимаем 2 вентилятора серии УК-2М с диаметром рабочего колеса 1200 мм.
В дальнейшем следует определить параметры аэродинамической сети : необходимый расход воздуха и напор воздуха
, привести зависимость
к безразмерной характеристики сети
и совместимость её (т.е. решить совместно) с безразмерной аэродинамической характеристикой вентилятора
.
Кроме этого определяются: угловая скорость вращения вентиляторного колеса , угол установки лопастей
, к.п.д. вентилятора
и расход мощности на их привод.
3.5.1 Определяем величину средней температуры воздуха в шахте холодильника
3.5.2 Определяем необходимый расход воздуха в аэродинамической сети при температуре
,
где - плотность воздуха при температуре 71,6 °С.
,
где 287- значение удельной газовой постоянной воздуха
3.5.3 Для расчета полного напора или давления воздуха, создаваемого вентиляторами , необходимо рассчитать скорость воздушного потока
и все составляющие аэродинамического сопротивления движению воздуха
Определяем скорость воздуха в сечении, омываемом лопастями вентилятора
Определяем степень поджатия потока воздуха
,
где - общая площадь фронта радиатора радиаторов, обслуживаемая вентилятором,
- высота шахты холодильника с радиаторами (можно принимать равной 1,9 м)
Рис. 3 Принципиальная схема аэродинамической сети шахты холодильника
Определяем аэродинамическое сопротивление боковых жалюзи
,
где - коэффициент сопротивления проходу воздуха через боковые жалюзи,
- плотность воздуха при температуре 40°С,
- скорость воздуха перед фронтом боковых жалюзи.
,
где - фронтальная поверхность одной секции радиатора
Определяем аэродинамическое сопротивление секций
,
где - число Эйлера. Подсчитывается в зависимости от Величины числа Рейнольдса, полученного ранее для воздуха при тепловом расчете секций (
). В нашем случае
находится в пределах 1400…3382. Значит число Эйлера рассчитывается на основании выражения
,
где -температурный фактор, рассчитываемый в виде
Определяем аэродинамическое сопротивление шахты
,
где - коэффициент аэродинамического сопротивления шахты
Рассчитываем аэродинамическое сопротивление вентилятора
Находим аэродинамическое сопротивление верхних жалюзи
Рассчитаем полное давление воздуха, которое необходимо обеспечить вентилятору
3.5.4 Определяем угол закрутки лопаток вентилятора, соответствующий максимальному значению к.п.д.-
Выполнение этой операции связано с использованием безразмерной характеристики вентилятора, представленной в относительных значениях расхода и напора воздуха
. Поэтому, чтобы воспользоваться кривыми (рис. 4), необходимо полученные нами ранее значения G и Н вентилятора привести к безразмерному виду.
Таблица 4
Параметры | Частота вращения, об/мин | |||
1430 | 1590 | 1750 | 1900 | |
Окружная скорость | 90 | 100 | 110 | 120 |
Коэффициент расхода воздуха вентилятором | 102 | 113 | 124 | 136 |
Коэффициент напора воздуха | 8181 | 10100 | 12221 | 14544 |
Относительный расход воздуха, | 0,29 | 0,27 | 0,24 | 0,22 |
Относительный напор воздуха, | 0,17 | 0,14 | 0,11 | 0,095 |
С этой целью задаемся несколькими, произвольно выбранными значениями угловой скорости вращения об/мин рабочего колеса вентилятора и подсчитываем для них окружную скорость
внешних кромок лопаток рабочего колеса, имея в виду, что максимальное значение
. Найденные таким образом величины
позволяют найти интересующие нас значения
и
сети.