143604 (691712), страница 3
Текст из файла (страница 3)
Следовательно, правильно эту формулу записать так:
Откуда же мы знаем, равновозможны случаи или нет? На этот вопрос отвечает опыт. Причем опыт, который не обязательно ставить. Бывает, вполне достаточно провести его мысленно. Допустим, вы собрались сыграть с товарищем в шахматы. Кому играть белыми, должен решить жребий. Ваш партнер в одной руке зажимает белую фигуру, в другой – черную. Какова вероятность, что вы будете играть белыми? Каждый из нас, не задумываясь, назовет 50 процентов. Но почему? Это результат мысленного опыта: мы инстинктивно оцениваем шансы отгадать любую фигурку как равновероятные, и поскольку белых фигур ровно половина, то это и будет интересующая нас вероятность.
Вот еще один пример. Многим читателям, видимо, доводилось слышать о такой дикой игре армейского захолустья царской России. В барабан многозарядного револьвера закладывается лишь один патрон, после чего барабан несколько раз проворачивается. Затем участники игры по очереди приставляют револьвер к виску и нажимают на спуск. Так вот, для того чтобы сказать, чему равна при этом вероятность проигрыша, явно нет необходимости ставить эксперимент. Так же как и при отгадывании шахматной фигуры, равновозможность шансов здесь очевидна из соображения о симметрии возможных исходов. И вероятность проигрыша – получения пули – для того, кто стреляет первым, в расчете на 5 патронов равна:
Вполне можно ограничиться мысленным экспериментом и там, где равновозможность шансов очевидна из геометрического представления задачи. Скажем, в офисе проложен телефонный кабель длиной 60 метров, из которых 3 метра приходится на труднодоступное место. Спрашивается, какова вероятность в случае выхода кабеля из строя, что повреждение случится именно на труднодоступном участке?
Такую вероятность иногда называют геометрической – ведь она получена путем сопоставления длин двух отрезков. И соображение о равновозможности шансов (уверенность в том, что появление неисправности возможно в любом месте кабеля) в этом случае исходит из наглядных, геометрических представлений.
Интуитивное определение вероятности, выработанное человеком и ходе многовековой эволюции, не раз выручало его в сложных ситуациях. Принимая решение «что лучше», «что быстрее», «какова мера опасности», люди, сами того не ведая, часто основывают свой выбор на интуитивной вероятной оценке. «Лучше поездом, чем самолетом», «Поеду-ка я трамваем, автобуса не дождаться», «Сегодня стоит надеть плащ» – во всех этих решениях явно просматривается учет возможности случая.
С интуитивным определением вероятности тесно связан так называемый принцип практической уверенности. Принцип этот можно сформулировать так: «Если вероятность события мала, то следует считать, что в однократном опыте – в данном конкретном случае – это событие не произойдет. И наоборот – при большой вероятности событие следует ожидать».
В повседневной жизни мы широко, сами то не подозревая, пользуемся этим важным принципом. Скажем, собираясь лететь в отпуск самолетом, мы уверены в том, что нас доставят на места в целости и сохранности: не пишем завещание, даем телеграмму с просьбой встретить т. п. Тем самым мы интуитивно принимаем, что вероятность аварии самолета равна нулю – событие невозможное, хотя эта вероятность всегда имеет некоторое, правда весьма небольшое, но все же отличное от нуля значение. Вероятность же нашей доставки до места соответственно но принимается равной единице – событие это считается достоверным.
Оценивая практическую невозможность или достоверность события и принимая на этой основе решение, мы, однако, далеко не всегда связываем свой выбор с предельными, крайним значениями вероятности. Величина вероятности, которая нас практически устраивает, зависит от того, какова важность последствий принятого нами решения. Решение надеть плащ может быть принято и в том случае, если вероятность дождя, скажем, 70–80 %. Но вряд ли мы решимся прыгнуть с парашютом, узнав, что у него такая же (70–80 %) надежность.
Итак, вероятность – это степень возможности появления будущего случайного события Руководствуясь этим определением, решим несколько примеров.
3. Примеры расчетов на будущее
ПРИМЕР 1
«Я пришла к тебе против своей воли,– сказала она твердым голосом,– но мне велено исполнить твою просьбу. Тройка, семерка и туз выиграют тебе сряду...»
Вероятность события, предсказанного пушкинской «пиковой дамой», легко подсчитать с помощью классической формулы. Общее число равновозможных шансов при этом будет равно количеству всех вариантов, в которых могут быть взяты три любые карты из колоды. Считая, что в колоде Германна было 52 карты, это число равно количеству сочетаний из 52 по 3. Заглянув в учебник или справочник по математике, с помощью формул комбинаторики – раздела математики, изучающего комбинации перестановки предметов, получаем 44 200 сочетаний. Числом благоприятствующих шансов здесь будет количество возможных вариантов, включающих заветные карты из той же колоды. Например, сначала какую-нибудь одну из четырех троек, затем одну из четырех семерок, наконец, один из четырех тузов. Годится и любой другой порядок – он значения для Германна не имеет. Общее число таких благоприятствующих сочетаний равно 12.
Применив классическую формулу, получим:
Пушкин совершенно правильно оценил ситуацию: при такой ничтожной вероятности Герман мог рассчитывать только на чудо...
С помощью классической формулы легко подсчитать, например, вероятность такого обычно небезразличного нам события, как выигрыш в лотерею.
Вот типичный пример условий денежно-вещевой лотереи. На каждый разряд, включающий 10 000 лотерейных билетов, приходится 120 денежных и 80 вещевых выигрышей. Какова вероятность выиграть деньги, вещь или хоть что-нибудь по одному лотерейному билету? Решение столь простой задачи под силу ученику начальной школы, стоит лишь применить классическую формулу:
В последнем расчете мы суммируем в числителе дроби, так как число благоприятствующих шансов складывается из количества денежных и вещевых выигрышем.
Несколько сложнее дело обстоит с числовой лотереей, примером которой может служить некогда популярное у нас спортлото. Здесь не все отдано на откуп случаю: каждый участник может избирать номера для вычеркивания по своему полному усмотрению. Участники спортлото как бы играют друг с другом. Однако, как мы сейчас убедимся, и здесь места для случая остается вполне достаточно.
Какова, например, в числовой лотерее вероятность вычеркнуть правильно все 6 номеров из 49? Подсчитано, что вычеркивание 6 цифр из 49 может быть произведено почти 14 миллионами различных способов (точная цифра 13 983 816). Следовательно, вероятность единственного правильного вычеркивания равна
Отгадать 5 цифр – это значит указать ошибочно одну из нужных шести. Такую ошибку можно сделать 258 способами. Значит, именно таковы шансы, благоприятствующие угадыванию 5 номеров. А вероятность этого события по классической формуле равна
Четыре номера угадает, естественно, значительно больше людей, число благоприятствующих шансов повышается здесь до 13 545. И вероятность, соответственно, будет выше:
И наконец, вероятность угадать три номера равна
Все это ничтожно мало. Но зато в утешение любителей подобных лотерей теория вероятностей может несколько поднять их шансы на выигрыш (не зря ведь вероятность – мера надежды). Вычеркивая цифры, мы обычно не следим за тем, какую долю составляют среди вычеркнутых однозначные. И порой таких оказывается половина, а то и больше. Так делать не следует. Ведь из 49 цифр карточки однозначных всего 9. И следовательно, вероятность выпадания на них выигравшего номера составляет всего
, или 18,4%.
Эту цифру легко проверить, взяв подряд 100 номеров, выигравших в спортлото. Из них около 18 будут однозначными. Значит, вычеркивать цифры тоже нужно с учетом этой вероятности: если у вас одна карточка, из шести вычеркнутых цифр лишь одна должна быть однозначной; если десять карточек, то на девяти вычеркивать по одной однозначной цифре, а на десятой – две.
На непосредственном подсчете основано и свойственное всем людям интуитивное определение вероятности. Скажем, нас спрашивают, что вероятнее, отгадать в спортлото правильно 3 или 4 номера? Мы, не задумываясь, без всякого расчета отвечаем – три. (Правда, мы вряд ли сможем сообразить без расчетов, что для трех номеров вероятность выше почти в 20 раз!)
Вот еще несколько примеров, когда интуиция оказывается несостоятельной.
ПРИМЕР 2
Теория вероятностей утверждает, что случайные события, те, которые мы стремимся предсказать, иногда могут происходить довольно часто. Можно произвести такой опыт. Если в вашей учебной группе юношей и девушек примерно поровну, попытайтесь предугадать, кто сейчас первым войдет в помещение: он или она? Сказав «он», вы рискуете ошибиться лишь в половине всех случаев – около 50 % ваших предсказаний обязательно оправдаются.
Зато если вы рискнете предсказать, что оба вошедших подряд окажутся юношами, вероятность резко упадет и окажется равной всего 25 % (по теореме умножения 0,5 х 0,5). Ваше предсказание сбудется лишь в одном случае из четырех.
Существует, однако, нехитрый способ добиться значительного увеличения числа «вещих» предсказаний. Для этого нужно только загадать, кто войдет, несколько по-иному: если вы будете утверждать, что юношей окажется не меньше, чем один из нескольких вошедших подряд, то это ваше предсказание имеет значительно больше шансов на успех. Расчет, сделанный по правилам теории вероятностей, показывает, что вероятность увидеть хотя бы одного юношу из пяти вошедших равна 93 %. Делая такое предсказание, вы практически ничем не рискуете – оно сбудется наверняка.
С высокой точностью сбудется также и предсказание прихода не менее двух юношей (или, если хотите, девушек – это в подобных задачах не имеет значения) из пяти вошедших. Вероятность этого события равна 81 %. Тоже высокая вероятность.
И даже предсказывая, что из пяти человек не менее трех окажутся лицами названного вами пола, вы все еще сохраняете шансы прослыть пророком – вероятность 50 %.
Приведем для разных случаев маленькую, но полезную табличку, взятую из теории вероятностей (табл. 5).
Таблица 5
Вероятности прихода предсказанного количества мужчин или женщин (в %)
Предсказанное количество мужчин или женщин | Количество вошедших | ||||
1 | 2 | 3 | 4 | 5 | |
Не менее 1 | 50 | 75 | 88 | 94 | 97 |
Не менее 2 | 0 | 25 | 50 | 69 | 81 |
Не менее 3 | 0 | 0 | 12 | 31 | 50 |
Не менее 4 | 0 | 0 | 0 | 6 | 19 |
Не менее 5 | 0 | 0 | 0 | 0 | 3 |
Посмотрев табличку, вы можете уверенно предсказать, например, что из пяти вошедших будет не менее двух мужчин (или женщин). Вероятность этого события очень большая – 81 %. В восьми случаях из десяти ваше предсказание сбудется.
Этот пример поможет нам приоткрыть один из профессиональных секретов гадалок и прочих прорицателей. Предположим, гадалка предсказывает пять каких-то событий, которые могут равно как произойти, так и не произойти – точно так же, как в одинаковой степени могут войти мужчина и женщина. Такими предсказаниями могут быть, например, «приятная встреча», «лихой недруг», «дальняя дорога», «получение известия», «нечаянная радость» и т. п.
Вероятность того, что сбудутся все пять предсказаний, как показывает расчет, исключительно мала – всего 3,1 %. Но легковерному человеку вполне достаточно, если состоится хотя бы не менее двух-трех из них. Заметьте, не менее – это может быть и два, и три, и четыре, и даже пять. А такое количество пророчеств – мы уже знаем – происходит с высокой вероятностью – 81 %. Поэтому-то часть сделанных гадалкой предсказаний обычно и сбывается. А легковерные люди и не подозревают, что приобщились к «таинствам» теории вероятностей.