142773 (691467), страница 3
Текст из файла (страница 3)
Регрессионные модели потребления ТДП (второй вариант)
| Модель № | 1 | 2 | 3 | 4 |
| Константа | 5,969 | 2,623 | 2,662 | 3,574 |
| Число членов семьи | 2,629 | 2,725 | 2,533 | 2,639 |
| Городская местность проживания | – | 4,443 | 4,087 | 4,314 |
| Суммарный доход домохозяйства за последние 30 дней | – | – | 7,41Е-005 | 7,46Е-005 |
| Число источников дохода за последнее время | – | – | – | –0,572 |
|
| 0,103 | 0,133 | 0,153 | 0,156 |
| Значимость модели (Sig.) | 0,000 | 0,000 | 0,000 | 0,000 |
Третий вариант индекса наилучшим образом подходит для моделирования (см. табл. ниже). Но и здесь 3-я модель объясняет лишь 18,7% колеблемости индекса. Число источников дохода здесь включать было излишне и SPSS не включил.
Регрессионные модели потребления ТДП (третий вариант)
| Модель № | 1 | 2 | 3 |
| Константа | 2,966 | 2,412 | 2,418 |
| Число членов семьи | 0,407 | 0,422 | 0,394 |
| Городская местность проживания | – | 0,735 | 0,683 |
| Суммарный доход домохозяйства за последние 30 дней | – | – | 1,09Е-005 |
|
| 0,124 | 0,1166 | 0,187 |
| Значимость модели (Sig.) | 0,000 | 0,000 | 0,000 |
Итак, поставленная цель была достигнута. Регрессионные модели построены. Они не очень хорошо объясняют все три варианта индекса, видимо, потому, что все-таки наличи в домохозяйстве ТДП объясняется, в основном, не этими переменными, а теми, что я не учла в анализе.
В следующем разделе обсуждаются некоторые выводы, которые можно из всего этого сделать.
5. Выводы
В ходе работы был проведен анализ данных опроса RLMS волны 2004 года. Основной целью работы было исследование зависимости наличия у домохозяйств товаров длительного пользования от доходов и различных социально-экономических факторов (числа членов домохозяйства, числа источников доходов, местности проживания).
Для учета наличия в домохозяйстве товаров длительного пользования было построено 3 варианта индикатора. Первый вариант, наиболее сложный, учитывал наличие ТДП по 13 позициям, веса различных ТДП (например, компьютер имеет значительно меньший вес, чем автомобиль), а также – количество лет, сколько данный товар уже используется в домохозяйстве. Логика данного индикатора такова, что чем больше дорогих товаров длительного пользования имеется в домохозяйстве и чем эти товары «моложе» (т.е. куплены относительно недавно), тем больше величина индикатора. Второй вариант упрощает логику первого индикатора, исключая из него веса ТДП. Т.е. теперь, например, дополнительная квартира и стиральная машинка имеют один и тот же вес. Но срок давности этих вещей по-прежнему учитывался. Этим я как бы проверяю обоснованность назначения весов товарам длительного пользования. Третий вариант индикатора еще проще. Он является простым пересчетом различных ТДП, без учета их возраста и весов. Это самый простой вариант.
Зависимости всех этих 3 индикаторов последовательно изучались в 3 блоках регрессионных моделей. Сначала изучалось влияние независимый переменных на 1-й индикатор, затем – на 2-й, затем – на 3-й. При этом в каждом блоке строилась не одна, а несколько моделей, т.е. сначала включалась одна независимая переменна, затем к ней добавлялась вторая и т.д. Для этого был использован метод анализа Stepwise пакета SPSS. Этот метод сам решает, нужно ли включить переменную в анализ, или нет. В итоге в 1 и 2 блоках были включены все независимые переменные, а в 3 блоке – все за исключением числа источников дохода. С добавлением каждой из независимых переменных в модель, объясняющая способность модели возрастала, при этом построенная в итоге модель множественной линейной регрессии была значимой (значения Sig. в таблице ANOVA были малы).
К сожалению, ни в одном блоке не удалось добиться высокого показателя качества регрессионной модели R2. Он был далек от единицы во всех случаях. Хуже всего поддавался моделированию 1-й показатель (самый сложный). Включением в модель всех 4 независимых переменных удалось добиться «объяснения» показателя лишь на R2=0,073 (т.е. на 7%). Это, конечно, мало. Второй показатель показал себя лучше. Он объяснялся максимум на 15,6%, что, хотя, тоже немного. Третий показатель показал себя чуть лучше второго. Он объяснялся на 18,7%.
Таким образом, основной вывод, который мы можем сделать – это тот, что отчасти показатель наличия, давности приобретения и веса ТДП в домохозяйстве объясняются текущими показателями дохода, числа источников дохода, а также – числом членов семьи и местностью проживания, но, вообще, зависимость от всех этих переменных – довольно слабая. Во всяком случае, не превышает 20%.
Другой вывод, который можно сделать – это тот, что SPSS включал переменные в модель всегда в одном и том же порядке. Сначала число членов семьи, затем – город, затем – доход, затем – число источников дохода (кроме блока 3). Наверное, это логично, поскольку разнообразие товаров длительного пользования, конечно, во многом зависит от размера семьи. В большой семье сложно обойтись без основных вещей. Наличие ТДП, конечно, зависит и от местности проживания, поскольку городские жители все же пока лучше, чем сельские обеспечены самым необходимым. Кроме этого, сельские жители редко владеют, скажем, дачами, т.е. у них показатель ТДП часто оказывается заниженным. С другой стороны, городские жители, например, реже, чем сельские, владеют тракторами. То, что доход домохозяйства за последние 30 дней находился далеко не на 1-м месте, значит, наверное, то, что, хотя мы и пытались учесть срок давности приобретения ТДП, но все же это товары длительного пользования, а, значит, их наличие лишь в очень небольшой степени объясняется доходом за последний месяц.
Замечу, что для всех независимых переменных коэффициенты были положительными, за исключением числа источников дохода. Получается, что чем больше у домохозяйства источников дохода, чем меньше у него индекс ТДП. Конечно, эта переменная влияет на индекс слабее остальных, но все же может показаться странным, что большой спектр источников дохода оборачивается малым количеством (или большой давностью ТДП). Я думаю, этот «парадокс» объясняется довольно просто. При подсчете числа источников доходов мы учитывали и такие источники, как пенсия, субсидии, помощь от государственных и негосударственных организаций, помощь родственников и других людей (в том числе – не только деньгами, но и вещами). Получается, что большое число источников дохода – не показатель благополучия домохозяйства, а, скорее, наоборот - обозначение того, что семья вынуждена прибегать к помощи со стороны. Тогда как состоятельные семьи часто существуют, в основном, на зарплату и, может быть, проценты от акций и т.д. Я считаю это довольно интересным выводом.
Довольно тяжело объяснить, почему аккуратный учет располагаемых ТДП в домохозяйстве выражающийся индексом №1, оказался хуже, чем остальные индексы, которые не учитывают, ни вес ТДП, ни их возраст. Может быть, это от того, что c увеличением дохода потребление различных товаров длительного пользования изменяется в разной степени независимо от их цен. А может быть мы просто подобрали такие веса, которые не точно соответствуют соотношениям цен на товары. Может, сложность заключается еще в том, что у нас как бы смешались ТДП, которые есть почти в каждой семье (холодильник, телевизор) и товары, которые есть лишь у некоторых (автомобиль, компьютер, дополнительная квартира). Возможно, проблема состоит еще и в том, что, если учитывать возраст вещей и не учитывать вещи, которые старше 10 лет (как это было сделано в индексах №1 и 2), то около 20% домохозяйств имеют индекс ТДП, равный 0, т.е. вовсе не имеют вещей, которые нас интересуют. А для третьего индекса таких домохозяйств только 1%.
Итак, в результате проведенных исследований мы выяснили, что зависимость потребления ТДП от дохода и других социально-экономических факторов можно описать с помощью множественной линейной регрессии, но далеко не полностью.
6. Литература
-
Салин В.Н., Шпаковская Е.П. Социально-экономическая статистика: Учебник. – М.: Юристъ, 2001. – 461 с.
-
Социальная статистика: Учебник / Под ред. чл.-кор. РАН И.И. Елисеевой. – 3-е изд., перераб и доп. – М. Финансы и статистика, 2002. – 480 с.
-
Социальное положение и уровень жизни населения России: Стат. сб. / Госкомстат России. – М., 2001. – 463 с.
-
SPSS Base 14.0 Руководство пользователя. – SPSS Inc, 2005. – 814 с.
-
Российский статистический ежегодник. 2005: Стат. сб. / Росстат. – М., 2006. – 819 с.
-
Сигел, Эндрю. Практическая бизнес-статистика. : Пер. с англ. – М. : Издательский дом «Вильямс», 2002. – 1056 с.
7. Приложения
Командный синтаксис SPSS-15 для построения моделей. В приложении приводится перечень команд трансформации и статистического анализа в SPSS, выполнение которых позволяет при наличии исходных данных получить расчетные показатели, а также таблицы с результатами моделирования. Синтаксис позволяет при необходимости быстро воспроизвести ход процесса моделирования, а также допускает легкую модификацию для построения аналогичных моделей на других данных, имеющих схожую структуру (либо на этих же данных, но по подгруппам респондентов). Дополнительно о синтаксисе SPSS можно прочитать на сайте www.spsstools.ru, или в руководстве пользователя по синтаксису (см. выше).
Внимание! Перед запуском синтаксиса необходимо определить пропущенные значения по всем переменным, чтобы они исключались из анализа и не искажали результатов расчета.
Вычисление показателей.
Вычисление числа членов семьи (это присутствует либо в переменной i1.o, либо в i1.n).
COMPUTE nfam=SUM(i1.o,i1.n).
Вычисление двоичной переменной «город» (если код 1 или 2, то это – город).
COMPUTE gorod=status<3.
Вычисление числа источников дохода (если код в этих переменных равен 1, значит респондент согласился, что у него есть такой источник дохода).
COMPUTE ndohod=SUM(0, if3=1, if6.1=1, if6.2=1,
3>














