126202 (690961), страница 3
Текст из файла (страница 3)
Примем .
Сила противодавления определится, Н:
, (11)
где – площадь сечения поршня.
Следовательно, решение формулы (11):
Подставляя данные в уравнение (6), определим статическую нагрузку:
(5.1),
Динамическая сила, Н:
, (12)
где, – приведенная к поршню силового цилиндра масса, кг;
– время ускорения или замедления движения, с;
– изменение скорости, м/c.
(13)
где – плотность стали, L=0,03.
Подставляя данные в формулу (13), найдем приведенную массу, кг:
,
, (14)
где – рабочий ход, м;
– время рабочего хода, с.
Подставляя найденные значения в выражение (12), получим:
(12.1)
Зная все эти данные, определим величину усилия, развиваемого гидроцилиндром (формула (12)), использовав данные выражений (5.1) и (12.1):
Далее по вычисленному усилию Т и принятому рабочему давлению уточняем диаметр силового гидроцилиндра, м:
(15)
Следовательно, решение формулы (15):
Примем D = 50 мм.
Определим толщину стенок корпуса тонкостенного гидроцилиндра изготовленного из вязкого материала (латунь), мм:
, (16)
где σ – допустимое напряжение материала на растяжение, Рп – пробное давление, .
При давлении рабочей жидкости ниже 10 МПа можно использовать алюминиевые трубы или литье из серого чугуна с МПа.
Наш цилиндр тонкостенный, так как DH/D<18:
Рассчитаем толщину донышка, причем донышко примем плоское, мм:
(17)
Итог формулы (17):
3.3 Расчёт гидроцилиндра на устойчивость
Допускаемая нагрузка из условий устойчивости, Н:
, (18)
где, К- коэффициент, учитывающий возможное повышение давления в гидросистеме К = 1,15; nц – запас устойчивости, принимаемый в зависимости от материала и назначения цилиндра, для чугуна 4…5, примем К = 4,5.
Критическую силу определим по формуле Эйлера, Н:
, (19)
где Е- модуль упругости материала, Е = 22·104 МПа; l – полная длина цилиндра с выдвинутым штоком, l = 110 мм; С- коэффициент учета заделки концов цилиндра и штока, С = 2.
Момент инерции цилиндра:
, (20)
где DH – наружний диаметр цилиндра; D -внутренний диаметр цилиндра. Итог формул (20), (19) и (18):
,
,
.
Из условия устойчивости гидроцилиндра определим допустимое давление жидкости в цилиндре, МПа:
, (21)
Цилиндр является устойчивым, так как рабочее давление меньше допускаемого, т.е. 1·107<2·1010.
4 Подбор гидромотора
Аксиально-поршневой гидромотор Г15-24
-
Рабочий объем, 68,4
;
-
Номинальное давление, 5
;
-
Номинальный крутящий момент, 50
;
-
Скорость вращения, 1000
;
-
Механический КПД, 0,895;
-
Объемный КПД, 0,95;
-
Полный КПД, 0,85.
5. Подбор трубопроводов
Функциональная связь гидроагрегатов в системе гидропривода осуществляется с помощью трубопроводов различной конструкции. Несмотря на относительную простоту этих элементов, от их правильного выбора зависит надежность работы гидропривода. Большая часть трубопроводов и присоединительной арматуры нормализованы.
Соединительный трубопровод гидропривода разделяют на 3 части: всасывающий и напорный трубопроводы, сливная магистраль. Всасывающим трубопроводом принято называть участок трубопровода гидропривода соединяющий насос с баком. Участок трубопровода, по которому жидкость от насоса поступает в гидравлический двигатель, называется напорным или нагнетательным; участок трубопровода, по которому жидкость отводится из рабочей полости гидродвигателя в резервуар, называется сливным.
Основной характеристикой трубопровода является его условный проход (номинальный внутренний диаметр). Исходными параметрами для определения номинальных внутренних диаметров трубопроводов являются: рабочее давление, расход гидродвигателя, скорость движения рабочей жидкости в данной части трубопровода.
5.1 Определение расхода
При подаче жидкости в бесштоковую полость гидроцилиндра расход , определяется по формуле:
, (22)
где – диаметр гидроцилиндра,
;
– рабочий ход поршня,
;
– время, необходимое для совершения рабочего хода,
.
Подставляя числа в выражение (22), получим:
Подача насоса должна быть больше расхода, обеспечивающего требуемую скорость рабочего органа гидродвигателя, на величину потерь расхода и приближенно принимается равной:
(23)
Подставив численные значения, получим:
В дальнейших расчетах нам придется применять значение расхода в литрах в минуту. Переведем расход, :
Переведем подачу, :
5.2 Допустимые скорости движения жидкости в трубопроводах
В трубопроводах гидропривода рекомендуются следующие величины допустимых скоростей:
-
всасывающего трубопровода
;
-
нагнетательного трубопровода
;
-
сливного трубопровода
.
5.3 Условный проход трубопроводов
При известном расходе и допустимой для соответствующего трубопровода скорости движения жидкости, условные проходы определяются по формуле:
(24)
Подставляя соответствующие значения допустимых скоростей, получим условные проходы:
Для всасывающего трубопровода, :
Для нагнетательного трубопровода, :
Для сливного трубопровода, :
Полученные значения диаметров округляются до ближайшего большего значения по ГОСТ 16516-70. Примем следующие значения диаметров трубопроводов, :
,
,
После принятия окончательного значения диаметров трубопроводов, рассчитаем реальные скорости движения жидкости в них, ::
(25)
Подставляя соответствующие значения диаметров, получим скорости:
Для всасывающего трубопровода:
Для нагнетательного трубопровода:
Для сливного трубопровода:
При величинах условного прохода менее 30 мм, применяются стальные, бесшовные, холоднотянутые и холоднокатаные трубы (ГОСТ8734-58). Примем материал для изготовления труб: Сталь 20.
Вычислим толщину стенки трубы по формуле:
, (26)
где – предел прочности при растяжении (сопротивление на разрыв), для выбранного материала,
(принимается по таблице 5.1 [1]):
Подставляя в формулу значения диаметров трубопроводов, получим толщину их стенок, :
,
,
5.4 Соединение трубопроводов
Трубопроводы, из которых монтируют гидролинии в гидроприводах, по конструкции можно разделить на жесткие и гибкие.
Жесткие трубопроводы в основном изготовляют из стальных бесшовных холоднотянутых труб или из труб цветных металлов: медь или алюминий.
В гидроприводах применяют следующие типы соединений:
а) пайка (сварка) - в машиностроении применяется редко, только для трубопроводов, не подлежащих демонтажу;
б) соединение с развальцовкой используют для труб диаметром . Соединение отличается простотой, но может применяться при давлении не более
и имеет ограниченное число повторных демонтажей вследствие затвердения материала и порчи развальцованной части трубы;
в) соединение трубопроводов по внутреннему конусу применяется для гидросистем с рабочим давлением до при необходимости частого демонтажа гидролинии. Этот тип соединения наиболее широко применяется в гидросистемах тракторов, дорожных и строительных машин;
г) соединение трубопроводов с врезающим кольцом распространено в гидросистемах, работающих при высоких давлениях. Соединение простое по конструкции и обеспечивает надежную герметизацию при давлениях до ;
д) фланцевое соединение трубопроводов применяется для стальных труб, диаметром свыше .
Типы и размеры арматуры соединительных частей трубопроводов указаны в ГОСТ 16039-70 16078-70, ГОСТ 15063-70
15804-70, ГОСТ 4233-67.
Гибкие трубопроводы применяют для соединения элементов гидропривода, которые расположены на подвижных частях и могут перемещаться относительно друг друга.
В качестве гибкого трубопровода в основном применяют резинотканевые шланги, называемые рукавами высокого давления (РВД). В зависимости от количества металлических оплеток рукава высокого давления делятся на три типа: 1 тип – с одной металлической оплеткой, рассчитанный на давление до ; 2 тип – с двойной оплеткой, рассчитанный на давление до
; 3 тип – с тройной оплеткой, применяется при внутреннем диаметре до
. Основные размеры РВД даны в ГОСТ 6286-73.
Для заданных условий работы гидросистемы гибкие трубопроводы могут быть выбраны из специальной литературы [8,10].
5.5 Выбор гидроаппаратуры
Тип и марку отдельных элементов гидроаппаратуры, выбирают (таблица 6.4 [1]) по давлению на их входе и фактическому расходу, проходящему через них.
В технических характеристиках гидроаппаратов приводится потеря давления при определенном (номинальном) расходе
. Как правило, не удается подобрать гидроаппарат, у которого фактический расход
соответствует
, а значит и потери давления фактические
будут отличаться от
.
Фактические потери давления рассчитываются простым суммированием потерь давления в каждом гидравлическом устройстве. Эти данные берутся из таблицы 6.4 [1]. Но так как не все выбранные гидроаппараты имеют номинальный расход, соответствующий требуемому, то и фактические потери давления будут отличаться от номинальных.
Определить фактические потери можно по формуле:
(27)
Перед определением потерь, необходимо выбрать тип и марку гидроаппаратуры на данном участке гидропривода. Выбирают их по расходу (таблице 6.4 [1]).
На данном участке находится следующая гидроаппаратура:
1. Напорный золотник с обратным клапаном Г56-23;
2. Реверсивный золотник Г72, Г73-12;
3. Золотник с ручным управлением Г 74-12;
4. Фильтр 0,08 Г 41-13
6. Определение потерь давления и объемных потерь в системе гидропривода
6.1 Определение потерь давления
При движении жидкости по трубопроводам гидропривода, при прохождении жидкости через контрольно-регулирующую и распределительную аппаратуру возникают потери давления. Поэтому давление выбранного насоса должно быть достаточным для обеспечения необходимого усилия или крутящего момента гидродвигателя и преодоления потерь давления, возникающих в трубопроводах, клапанах, дросселях и т. д.
Суммарные потери давления в гидросистеме гидропривода определяются по зависимости:
, (28)
где – потери давления при трении движущейся рабочей жидкости в трубопроводах;
– потери давления в местных сопротивлениях трубопроводов;
– потери давления в гидроаппаратуре.
Потери давления на трение жидкости в трубопроводах складываются из потерь на отдельных участках трубопровода:
, (29)
где – потери давления в трубопроводе нагнетания;
– потери давления в трубопроводе всасывания;
– потери давления в трубопроводе слива.
Потери давления на отдельных участках трубопроводов рассчитываются по формуле:
, (30)
где – коэффициент сопротивления жидкости;
– длина участка трубопровода,
;
– внутренний диаметр трубопровода,
;
– плотность рабочей жидкости, для выбранной жидкости (см. пункт 2.2)
;
– скорость жидкости на рассматриваемом участке трубопровода,
.
Для определения коэффициента сопротивления трения предварительно определяется число Рейнольдса:
, (31)
где – коэффициент кинематической вязкости жидкости,
. Для выбранного масла:
Подставив значения внутренних диаметров и скоростей жидкости в формулу (31), получим числа Рейнольдса для отдельных участков трубопровода:
Для всасывающего трубопровода:
Для нагнетательного трубопровода:
Для сливного трубопровода:
Как видим, значения числа Рейнольдса для всех участков трубопровода превышают критическое значение , значит, режим движения в них является турбулентным и коэффициент сопротивления для стальных труб рассчитывают по формуле Блазиуса:
(32)
Абсолютная шероховатость ∆ определяется по таблице 6.2[1]. Примем ∆=0,04, для стальных горячекатаных труб ГОСТ 8732-70.
Для всасывающего трубопровода:
Для нагнетательного трубопровода:
Для сливного трубопровода:
Подставляя все полученные значения в формулу (30), получим: ,
,
Суммируя полученные результаты по формуле (29), получим результирующие потери на трение, :
Потери давления в отдельных местных сопротивлениях трубопровода получаются путем сложения потерь в отдельных местных сопротивлениях, которые определяются по формуле:
, (33)
где – коэффициент местного сопротивления (по таблице 6.3 [1]),
;
– поправочный коэффициент, зависящий от числа Рейнольдса и определяемый по рисунку 6.1 [1].
Из исходных данных известно, что в магистрали встречаются 4 плавных поворота и 2 резких.
Для плавных поворотов коэффициент местного сопротивления, :
Для резких поворотов коэффициент местного сопротивления, :
Тогда общий коэффициент местного сопротивления, :
Теперь можно вычислить местные потери в нагнетательном и сливном трубопроводах, :
,
,
Тогда суммарные потери в местных сопротивлениях ( ), найдем по формуле:
(34)
Подставив числовые значения, получим:
Суммарные потери в гидроаппаратуре ( ) с учетом формулы (27) будут равны:
Зная все нужные значения, подставим их в выражение (28), получим общие потери давления в гидросистеме, :
6.2 Определение объемных потерь в системе гидропривода
Объемные потери в гидроприводе происходят вследствие утечек жидкости через зазоры в элементах гидропривода. Примером объемных потерь может служить утечка жидкости в рабочем цилиндре между стенками цилиндра и поршнем, утечка жидкости в золотнике.
Общие потери в гидроприводе складываются из потерь в насосе , гидродвигателе
, которые в зависимости от типа гидродвигателя, являются потерями в гидроцилиндре
, потерь в золотниковом распределителе
.
(35)
Приближенное значение перечисленных потерь можно выразить через удельную утечку, являющуюся потерей расхода приходящейся на один давления.
, (36)
где – удельная утечка жидкости в насосе, см3/мин МПа;
– удельная утечка жидкости в гидроцилиндре см3/мин МПа;
– удельная утечка жидкости в золотниковом распределителе, см3/мин МПа;
– давление, развиваемое насосом Па;
– давление в гидроцилиндре принимается равным рабочему давлению
, Па;
– давление в золотниковом распределителе принимается равным рабочему давлению
, Па.
Давление, развиваемое насосом:
, (37)
где – потери давления;
– рабочее давление.
Подставив численные значения, получим:
Подставляя числа в формулу (36), получим объемные потери в гидросистеме, :
.
7. Выбор насоса
Объемный насос, применяемый в гидроприводе, предназначен для преобразования энергии привода в энергию жидкости в виде давления и подачи жидкости в гидродвигатель, создавая усилие (крутящий момент) на рабочем органе и обеспечивая скорость его движения.
Выбор насоса производят по давлению, (см. пункт 6.2):
,
и расходу, :
, (38)
где – потери расхода;
– расход жидкости, поступающей в гидроцилиндр (см. пункт 5.1).
Подставляя числа, получим:
По таблице 7.1 [1] выберем шестеренный насос НШ-10 с номинальным давлением – , подачей –
и скоростью вращения –
. Для дальнейших расчетов, запишем его КПД: объемный –
, механический –
, полный –
.
8. Расчет параметров пневмогидроаккумулятора
Расчет параметров пневмогидроаккумулятора проводят на основе уравнения политропы, охватывающего все возможные состояния газа:
(39)
Обозначим общий объем аккумулятора , объем газа
, в конце зарядки при давлении
, объем
в конце разрядки аккумулятора при давлении
. Здесь
– полезный объем, аккумулятора; определяемый по формуле:
, (40)
где – подача насоса;
– время зарядки, равное 10-15 с.
Подставим численные значения и получим, м3:
Объем газа, м3:
(41)
Показатель политропы п зависит от условий работы аккумулятора (теплообмен, продолжительность разрядки) и в качестве средних значений его можно принять 1,1 - 1,3. Минимальное давление газа:
, (42)
где – рабочее давление (в гидроцилиндре).Отношение давлений
, принимают равным 0,5 - 0,7.
,
Подставим численные значения в формулу (41) и получим:
Для обеспечения надежной работы гидросистемы необходимо иметь количество жидкости в аккумуляторе несколько больше полезного объема.
, (42)
где – коэффициент, равный 1,2 - 1,5.
Полный объем аккумулятора, м3:
, (43)
9. Определение параметров гидропривода
9.1 Определение КПД гидропривода
Полный КПД гидропривода вычисляется по формуле:
, (44)
где – гидравлический КПД;
– объемный КПД;
– механический КПД;
Гидравлический КПД:
, (45)
где – давление, развиваемое насосом (см. пункт 6);
– давление в гидродвигателе;
– потери давления (см. пункт 5.1).
Подставляя числа, получим:
Объемный КПД:
, (46)
где – расход жидкости, поступающей в гидроцилиндр (см. пункт 4.1);
– подача насоса (см. пункт 6).
Подставив значения, получим:
Механический КПД гидропривода, учитывающий потери мощности в насосе и гидродвигателе:
, (47)
где – механический КПД насоса (см. пункт 6);
– механический КПД гидромотора.
Механический КПД гидроцилиндра:
, (48)
где – полезная нагрузка на штоке гидроцилиндра, Н;
– потери трения в гидроцилиндре (см. пункт 3.2.1).
Сила, воспринимаемая поршнем гидроцилиндра, Н:
(49)
Подставляя числа в эти формулы, получим:
Теперь можем вычислить механический КПД привода по формуле (47):
Вычислив все составляющие общего КПД, подставим их в формулу (44):
Таким образом, общий КПД данного гидропривода равен .
9.2 Тепловой расчет гидропривода
Целью теплового расчета является определение размеров резервуара, необходимых для обеспечения выбранной температуры жидкости.
Источниками тепловыделения в гидросистеме являются насосы, трубопроводы, гидроаппаратура и гидродвигатели.
Приняв, что основная теплопередача осуществляется через поверхность бака, значение температуры жидкости , устанавливающееся при длительной работе гидропривода, определяется из выражения:
, (50)
где – коэффициент теплопередачи,
;
– площадь поверхности резервуара,
, через который осуществляется теплопередача;
– потери мощности в гидроприводе;
– максимальная температура окружающего воздуха (
).
Количество теряемой в гидроприводе мощности, :
, (51)
где – КПД насоса,
– КПД гидропривода.
Подставляя численные значения, получим потери мощности:
Площадь поверхности бака ( ), через которую происходит отвод тепла, кВт:
Исходя из условий работы гидропривода, принимаем емкость бака равной минутной производительности насоса:
Список используемой литературы
1. Расчет гидропривода: Метод. указания по курсовой работе для студентов МТФ, АТФ и ФНГТМ / Сост. В. Г. Иванов; Краснояр. гос. техн. ун-т. – Красноярск: КГТУ, 1999. – 47 с.
2. Составление принципиальных гидравлических схем: Методическое указание для студентов машиностроительных и транспортных специальностей/Сост. С. В. Каверзин, В. Г. Иванов: RUNE/ Красноярск, 1994. 58 с.
3. Каверзин С. В. Курсовое и дипломное проектирование по гидроприводу самоходных машин: Учеб. Пособие / С. В. Каверзин. – Красноярск: ПИК «4 Выбор и расчет параметров гидромоторов››
4. Колка И. А., Кувшинский В. В. «Многооперационные станки››, 1983 г.
5. Свешников В. К., Усов А. А. «Станочные гидроприводы››
Размещено на Allbest.ru
58
18>2>