126202 (690961), страница 3

Файл №690961 126202 (Расчет гидропривода многоцелевого сверлильно-фрезерно-расточного станка с числовым программным управлением) 3 страница126202 (690961) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Примем .

Сила противодавления определится, Н:

, (11)

где – площадь сечения поршня.

Следовательно, решение формулы (11):

Подставляя данные в уравнение (6), определим статическую нагрузку:

(5.1),

Динамическая сила, Н:

, (12)

где, – приведенная к поршню силового цилиндра масса, кг; – время ускорения или замедления движения, с; – изменение скорости, м/c.

(13)

где – плотность стали, L=0,03.

Подставляя данные в формулу (13), найдем приведенную массу, кг:

,

, (14)

где – рабочий ход, м; – время рабочего хода, с.

Подставляя найденные значения в выражение (12), получим:

(12.1)

Зная все эти данные, определим величину усилия, развиваемого гидроцилиндром (формула (12)), использовав данные выражений (5.1) и (12.1):

Далее по вычисленному усилию Т и принятому рабочему давлению уточняем диаметр силового гидроцилиндра, м:

(15)

Следовательно, решение формулы (15):

Примем D = 50 мм.

Определим толщину стенок корпуса тонкостенного гидроцилиндра изготовленного из вязкого материала (латунь), мм:

, (16)

где σ – допустимое напряжение материала на растяжение, Рп – пробное давление, .

При давлении рабочей жидкости ниже 10 МПа можно использовать алюминиевые трубы или литье из серого чугуна с МПа.

Наш цилиндр тонкостенный, так как DH/D<18:

Рассчитаем толщину донышка, причем донышко примем плоское, мм:

(17)

Итог формулы (17):

3.3 Расчёт гидроцилиндра на устойчивость

Допускаемая нагрузка из условий устойчивости, Н:

, (18)

где, К- коэффициент, учитывающий возможное повышение давления в гидросистеме К = 1,15; nц – запас устойчивости, принимаемый в зависимости от материала и назначения цилиндра, для чугуна 4…5, примем К = 4,5.

Критическую силу определим по формуле Эйлера, Н:

, (19)

где Е- модуль упругости материала, Е = 22·104 МПа; l – полная длина цилиндра с выдвинутым штоком, l = 110 мм; С- коэффициент учета заделки концов цилиндра и штока, С = 2.

Момент инерции цилиндра:

, (20)

где DH – наружний диаметр цилиндра; D -внутренний диаметр цилиндра. Итог формул (20), (19) и (18):

,

,

.

Из условия устойчивости гидроцилиндра определим допустимое давление жидкости в цилиндре, МПа:

, (21)

Цилиндр является устойчивым, так как рабочее давление меньше допускаемого, т.е. 1·107<2·1010.

4 Подбор гидромотора

Аксиально-поршневой гидромотор Г15-24

  1. Рабочий объем, 68,4 ;

  2. Номинальное давление, 5 ;

  3. Номинальный крутящий момент, 50 ;

  4. Скорость вращения, 1000 ;

  5. Механический КПД, 0,895;

  6. Объемный КПД, 0,95;

  7. Полный КПД, 0,85.

5. Подбор трубопроводов

Функциональная связь гидроагрегатов в системе гидропривода осуществляется с помощью трубопроводов различной конструкции. Несмотря на относительную простоту этих элементов, от их правильного выбора зависит надежность работы гидропривода. Большая часть трубопроводов и присоединительной арматуры нормализованы.

Соединительный трубопровод гидропривода разделяют на 3 части: всасывающий и напорный трубопроводы, сливная магистраль. Всасывающим трубопроводом принято называть участок трубопровода гидропривода соединяющий насос с баком. Участок трубопровода, по которому жидкость от насоса поступает в гидравлический двигатель, называется напорным или нагнетательным; участок трубопровода, по которому жидкость отводится из рабочей полости гидродвигателя в резервуар, называется сливным.

Основной характеристикой трубопровода является его условный проход (номинальный внутренний диаметр). Исходными параметрами для определения номинальных внутренних диаметров трубопроводов являются: рабочее давление, расход гидродвигателя, скорость движения рабочей жидкости в данной части трубопровода.

5.1 Определение расхода

При подаче жидкости в бесштоковую полость гидроцилиндра расход , определяется по формуле:

, (22)

где – диаметр гидроцилиндра, ;

– рабочий ход поршня, ;

– время, необходимое для совершения рабочего хода, .

Подставляя числа в выражение (22), получим:

Подача насоса должна быть больше расхода, обеспечивающего требуемую скорость рабочего органа гидродвигателя, на величину потерь расхода и приближенно принимается равной:

(23)

Подставив численные значения, получим:

В дальнейших расчетах нам придется применять значение расхода в литрах в минуту. Переведем расход, :

Переведем подачу, :

5.2 Допустимые скорости движения жидкости в трубопроводах

В трубопроводах гидропривода рекомендуются следующие величины допустимых скоростей:

  • всасывающего трубопровода ;

  • нагнетательного трубопровода ;

  • сливного трубопровода .

5.3 Условный проход трубопроводов

При известном расходе и допустимой для соответствующего трубопровода скорости движения жидкости, условные проходы определяются по формуле:

(24)

Подставляя соответствующие значения допустимых скоростей, получим условные проходы:

Для всасывающего трубопровода, :

Для нагнетательного трубопровода, :

Для сливного трубопровода, :

Полученные значения диаметров округляются до ближайшего большего значения по ГОСТ 16516-70. Примем следующие значения диаметров трубопроводов, : , ,

После принятия окончательного значения диаметров трубопроводов, рассчитаем реальные скорости движения жидкости в них, ::

(25)

Подставляя соответствующие значения диаметров, получим скорости:

Для всасывающего трубопровода:

Для нагнетательного трубопровода:

Для сливного трубопровода:

При величинах условного прохода менее 30 мм, применяются стальные, бесшовные, холоднотянутые и холоднокатаные трубы (ГОСТ8734-58). Примем материал для изготовления труб: Сталь 20.

Вычислим толщину стенки трубы по формуле:

, (26)

где – предел прочности при растяжении (сопротивление на разрыв), для выбранного материала, (принимается по таблице 5.1 [1]):

Подставляя в формулу значения диаметров трубопроводов, получим толщину их стенок, :

,

,

5.4 Соединение трубопроводов

Трубопроводы, из которых монтируют гидролинии в гидроприводах, по конструкции можно разделить на жесткие и гибкие.

Жесткие трубопроводы в основном изготовляют из стальных бесшовных холоднотянутых труб или из труб цветных металлов: медь или алюминий.

В гидроприводах применяют следующие типы соединений:

а) пайка (сварка) - в машиностроении применяется редко, только для трубопроводов, не подлежащих демонтажу;

б) соединение с развальцовкой используют для труб диаметром . Соединение отличается простотой, но может применяться при давлении не более и имеет ограниченное число повторных демонтажей вследствие затвердения материала и порчи развальцованной части трубы;

в) соединение трубопроводов по внутреннему конусу применяется для гидросистем с рабочим давлением до при необходимости частого демонтажа гидролинии. Этот тип соединения наиболее широко применяется в гидросистемах тракторов, дорожных и строительных машин;

г) соединение трубопроводов с врезающим кольцом распространено в гидросистемах, работающих при высоких давлениях. Соединение простое по конструкции и обеспечивает надежную герметизацию при давлениях до ;

д) фланцевое соединение трубопроводов применяется для стальных труб, диаметром свыше .

Типы и размеры арматуры соединительных частей трубопроводов указаны в ГОСТ 16039-70 16078-70, ГОСТ 15063-70 15804-70, ГОСТ 4233-67.

Гибкие трубопроводы применяют для соединения элементов гидропривода, которые расположены на подвижных частях и могут перемещаться относительно друг друга.

В качестве гибкого трубопровода в основном применяют резинотканевые шланги, называемые рукавами высокого давления (РВД). В зависимости от количества металлических оплеток рукава высокого давления делятся на три типа: 1 тип – с одной металлической оплеткой, рассчитанный на давление до ; 2 тип – с двойной оплеткой, рассчитанный на давление до ; 3 тип – с тройной оплеткой, применяется при внутреннем диаметре до . Основные размеры РВД даны в ГОСТ 6286-73.

Для заданных условий работы гидросистемы гибкие трубопроводы могут быть выбраны из специальной литературы [8,10].

5.5 Выбор гидроаппаратуры

Тип и марку отдельных элементов гидроаппаратуры, выбирают (таблица 6.4 [1]) по давлению на их входе и фактическому расходу, проходящему через них.

В технических характеристиках гидроаппаратов приводится потеря давления при определенном (номинальном) расходе . Как правило, не удается подобрать гидроаппарат, у которого фактический расход соответствует , а значит и потери давления фактические будут отличаться от .

Фактические потери давления рассчитываются простым суммированием потерь давления в каждом гидравлическом устройстве. Эти данные берутся из таблицы 6.4 [1]. Но так как не все выбранные гидроаппараты имеют номинальный расход, соответствующий требуемому, то и фактические потери давления будут отличаться от номинальных.

Определить фактические потери можно по формуле:

(27)

Перед определением потерь, необходимо выбрать тип и марку гидроаппаратуры на данном участке гидропривода. Выбирают их по расходу (таблице 6.4 [1]).

На данном участке находится следующая гидроаппаратура:

1. Напорный золотник с обратным клапаном Г56-23;

2. Реверсивный золотник Г72, Г73-12;

3. Золотник с ручным управлением Г 74-12;

4. Фильтр 0,08 Г 41-13

6. Определение потерь давления и объемных потерь в системе гидропривода

6.1 Определение потерь давления

При движении жидкости по трубопроводам гидропривода, при прохождении жидкости через контрольно-регулирующую и распределительную аппаратуру возникают потери давления. Поэтому давление выбранного насоса должно быть достаточным для обеспечения необходимого усилия или крутящего момента гидродвигателя и преодоления потерь давления, возникающих в трубопроводах, клапанах, дросселях и т. д.

Суммарные потери давления в гидросистеме гидропривода определяются по зависимости:

, (28)

где – потери давления при трении движущейся рабочей жидкости в трубопроводах;

– потери давления в местных сопротивлениях трубопроводов;

– потери давления в гидроаппаратуре.

Потери давления на трение жидкости в трубопроводах складываются из потерь на отдельных участках трубопровода:

, (29)

где – потери давления в трубопроводе нагнетания;

– потери давления в трубопроводе всасывания;

– потери давления в трубопроводе слива.

Потери давления на отдельных участках трубопроводов рассчитываются по формуле:

, (30)

где – коэффициент сопротивления жидкости;

– длина участка трубопровода, ;

– внутренний диаметр трубопровода, ;

– плотность рабочей жидкости, для выбранной жидкости (см. пункт 2.2) ;

– скорость жидкости на рассматриваемом участке трубопровода, .

Для определения коэффициента сопротивления трения предварительно определяется число Рейнольдса:

, (31)

где – коэффициент кинематической вязкости жидкости, . Для выбранного масла:

Подставив значения внутренних диаметров и скоростей жидкости в формулу (31), получим числа Рейнольдса для отдельных участков трубопровода:

Для всасывающего трубопровода:

Для нагнетательного трубопровода:

Для сливного трубопровода:

Как видим, значения числа Рейнольдса для всех участков трубопровода превышают критическое значение , значит, режим движения в них является турбулентным и коэффициент сопротивления для стальных труб рассчитывают по формуле Блазиуса:

(32)

Абсолютная шероховатость ∆ определяется по таблице 6.2[1]. Примем ∆=0,04, для стальных горячекатаных труб ГОСТ 8732-70.

Для всасывающего трубопровода:

Для нагнетательного трубопровода:

Для сливного трубопровода:

Подставляя все полученные значения в формулу (30), получим: , ,

Суммируя полученные результаты по формуле (29), получим результирующие потери на трение, :

Потери давления в отдельных местных сопротивлениях трубопровода получаются путем сложения потерь в отдельных местных сопротивлениях, которые определяются по формуле:

, (33)

где – коэффициент местного сопротивления (по таблице 6.3 [1]), ;

– поправочный коэффициент, зависящий от числа Рейнольдса и определяемый по рисунку 6.1 [1].

Из исходных данных известно, что в магистрали встречаются 4 плавных поворота и 2 резких.

Для плавных поворотов коэффициент местного сопротивления, :

Для резких поворотов коэффициент местного сопротивления, :

Тогда общий коэффициент местного сопротивления, :

Теперь можно вычислить местные потери в нагнетательном и сливном трубопроводах, :

,

,

Тогда суммарные потери в местных сопротивлениях ( ), найдем по формуле:

(34)

Подставив числовые значения, получим:

Суммарные потери в гидроаппаратуре ( ) с учетом формулы (27) будут равны:

Зная все нужные значения, подставим их в выражение (28), получим общие потери давления в гидросистеме, :

6.2 Определение объемных потерь в системе гидропривода

Объемные потери в гидроприводе происходят вследствие утечек жидкости через зазоры в элементах гидропривода. Примером объемных потерь может служить утечка жидкости в рабочем цилиндре между стенками цилиндра и поршнем, утечка жидкости в золотнике.

Общие потери в гидроприводе складываются из потерь в насосе , гидродвигателе , которые в зависимости от типа гидродвигателя, являются потерями в гидроцилиндре , потерь в золотниковом распределителе .

(35)

Приближенное значение перечисленных потерь можно выразить через удельную утечку, являющуюся потерей расхода приходящейся на один давления.

, (36)

где – удельная утечка жидкости в насосе, см3/мин МПа;

– удельная утечка жидкости в гидроцилиндре см3/мин МПа;

– удельная утечка жидкости в золотниковом распределителе, см3/мин МПа;

– давление, развиваемое насосом Па;

– давление в гидроцилиндре принимается равным рабочему давлению , Па;

– давление в золотниковом распределителе принимается равным рабочему давлению , Па.

Давление, развиваемое насосом:

, (37)

где – потери давления;

– рабочее давление.

Подставив численные значения, получим:

Подставляя числа в формулу (36), получим объемные потери в гидросистеме, : .

7. Выбор насоса

Объемный насос, применяемый в гидроприводе, предназначен для преобразования энергии привода в энергию жидкости в виде давления и подачи жидкости в гидродвигатель, создавая усилие (крутящий момент) на рабочем органе и обеспечивая скорость его движения.

Выбор насоса производят по давлению, (см. пункт 6.2):

,

и расходу, :

, (38)

где – потери расхода;

– расход жидкости, поступающей в гидроцилиндр (см. пункт 5.1).

Подставляя числа, получим:

По таблице 7.1 [1] выберем шестеренный насос НШ-10 с номинальным давлением – , подачей – и скоростью вращения – . Для дальнейших расчетов, запишем его КПД: объемный – , механический – , полный – .

8. Расчет параметров пневмогидроаккумулятора

Расчет параметров пневмогидроаккумулятора проводят на основе уравнения политропы, охватывающего все возможные состояния газа:

(39)

Обозначим общий объем аккумулятора , объем газа , в конце зарядки при давлении , объем в конце разрядки аккумулятора при давлении . Здесь – полезный объем, аккумулятора; определяемый по формуле:

, (40)

где – подача насоса;

– время зарядки, равное 10-15 с.

Подставим численные значения и получим, м3:

Объем газа, м3:

(41)

Показатель политропы п зависит от условий работы аккумулятора (теплообмен, продолжительность разрядки) и в качестве средних значений его можно принять 1,1 - 1,3. Минимальное давление газа:

, (42)

где – рабочее давление (в гидроцилиндре).Отношение давлений , принимают равным 0,5 - 0,7.

,

Подставим численные значения в формулу (41) и получим:

Для обеспечения надежной работы гидросистемы необходимо иметь количество жидкости в аккумуляторе несколько больше полезного объема.

, (42)

где – коэффициент, равный 1,2 - 1,5.

Полный объем аккумулятора, м3:

, (43)

9. Определение параметров гидропривода

9.1 Определение КПД гидропривода

Полный КПД гидропривода вычисляется по формуле:

, (44)

где – гидравлический КПД;

– объемный КПД;

– механический КПД;

Гидравлический КПД:

, (45)

где – давление, развиваемое насосом (см. пункт 6);

– давление в гидродвигателе;

– потери давления (см. пункт 5.1).

Подставляя числа, получим:

Объемный КПД:

, (46)

где – расход жидкости, поступающей в гидроцилиндр (см. пункт 4.1);

– подача насоса (см. пункт 6).

Подставив значения, получим:

Механический КПД гидропривода, учитывающий потери мощности в насосе и гидродвигателе:

, (47)

где – механический КПД насоса (см. пункт 6);

– механический КПД гидромотора.

Механический КПД гидроцилиндра:

, (48)

где – полезная нагрузка на штоке гидроцилиндра, Н;

– потери трения в гидроцилиндре (см. пункт 3.2.1).

Сила, воспринимаемая поршнем гидроцилиндра, Н:

(49)

Подставляя числа в эти формулы, получим:

Теперь можем вычислить механический КПД привода по формуле (47):

Вычислив все составляющие общего КПД, подставим их в формулу (44):

Таким образом, общий КПД данного гидропривода равен .

9.2 Тепловой расчет гидропривода

Целью теплового расчета является определение размеров резервуара, необходимых для обеспечения выбранной температуры жидкости.

Источниками тепловыделения в гидросистеме являются насосы, трубопроводы, гидроаппаратура и гидродвигатели.

Приняв, что основная теплопередача осуществляется через поверхность бака, значение температуры жидкости , устанавливающееся при длительной работе гидропривода, определяется из выражения:

, (50)

где – коэффициент теплопередачи, ;

– площадь поверхности резервуара, , через который осуществляется теплопередача;

– потери мощности в гидроприводе;

– максимальная температура окружающего воздуха ( ).

Количество теряемой в гидроприводе мощности, :

, (51)

где – КПД насоса,

– КПД гидропривода.

Подставляя численные значения, получим потери мощности:

Площадь поверхности бака ( ), через которую происходит отвод тепла, кВт:

Исходя из условий работы гидропривода, принимаем емкость бака равной минутной производительности насоса:

Список используемой литературы

1. Расчет гидропривода: Метод. указания по курсовой работе для студентов МТФ, АТФ и ФНГТМ / Сост. В. Г. Иванов; Краснояр. гос. техн. ун-т. – Красноярск: КГТУ, 1999. – 47 с.

2. Составление принципиальных гидравлических схем: Методическое указание для студентов машиностроительных и транспортных специальностей/Сост. С. В. Каверзин, В. Г. Иванов: RUNE/ Красноярск, 1994. 58 с.

3. Каверзин С. В. Курсовое и дипломное проектирование по гидроприводу самоходных машин: Учеб. Пособие / С. В. Каверзин. – Красноярск: ПИК «4 Выбор и расчет параметров гидромоторов››

4. Колка И. А., Кувшинский В. В. «Многооперационные станки››, 1983 г.

5. Свешников В. К., Усов А. А. «Станочные гидроприводы››

Размещено на Allbest.ru

58



Характеристики

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6552
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее