125872 (690728)

Файл №690728 125872 (Проектирование системы автоматического управления)125872 (690728)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Содержание.

1.Анализ системы.................................................................................................4

1.1 Исследование устойчивости...................................................................4

1.2 Построение АЧХ, ФЧХ, АФЧХ..............................................................7

1.3 Численные методы интегрирования........................................................9

1.4 Анализ системы с использованием спектрального метода (базис Лягерра)................................................................................................................13

2. Синтез регулятора...........................................................................................17

3. Синтез робастного регулятора матричным методом...................................19

Приложение..........................................................................................................22

Литература............................................................................................................33

у (t) x(t)

- -




Рис. 1. Структурная схема заданной САУ

Данные:

1. Анализ системы.

1.1 Исследование устойчивости.

- передаточная функция

- характеристический полином

Рис. 2. Характеристический полином.

имеет 1 действительный корень и 2 комплексных.

Уравнение решается методом Стеффенсена.

Метод Стеффенсена.

Начальное приближение для нахождения действительного корня.

На рис.3. изображено значение корня от итерации.

Рис.3. Динамика изменения корня в зависимости от итерации.

Подставим в (*).

Корни характеристического уравнения

Полюса передаточной функции находятся в левой полуплоскости. Система устойчива. Система будет колебательной т.к. корни имеют мнимую часть

Построение АЧХ, ФЧХ, АФЧХ.

Годограф АФЧХ.

Рис.4. АФЧХ

График АЧХ

Рис.5. АЧХ

График ФЧХ

Рис.6. ФЧХ

1.2 Построение переходного процесса численным методом.

Для решения дифференциального уравнения используется многошаговый, неявный метод второго порядка, интерполяционная схема Адамса.

В неявных методах используется информация о возможном будущем значении решения в точке п+1. Это несколько повышает точность получаемых результатов по сравнению с явными методами.

Погрешность

При решении уравнения высокого порядка необходимо перейти к нормальной форме Коши.

нормальная форма Коши имеет вид

Разгонный метод Рунге – Кутта 5.

Дифференциальное уравнение системы.

Рис.7. Переходная функция найденная численным методом и точная

Рис.8. Переходная функция найденная численным методом и точная при

Рис.9. Переходная функция найденная численным методом и точная

Заключение: из графиков видно, что наибольшая погрешность возникает в самом начале процесса интегрирования.

При погрешность значительно вырастает.

1.3 Анализ спектральным методом системы по базису функций Лягерра.

Разложим ядра интегрального уравнения в ряды Фурье по базису функций Лягерра.

функции Лягерра.

Выбираем

Дифференциальное уравнение системы.

Спектральная характеристика системы определяется по формуле

Спектр выходного сигнала системы:

Спектральная характеристика системы:

Рис.10. Переходная функция, построенная спектральным методом

Рис.11. Реакция на

Фазовый сдвиг

2. Синтез регулятора

Так реальная переходная характеристика системы не удовлетворяет поставленным требованиям , необходимо произвести коррекцию системы. В качестве корректирующего устройства ПИД –регулятор .

Эталонная переходная характеристика

Необходимо минимизировать следующую целевую функцию.

Метод оптимизации Дэвидона, Флетчера, Пауэла.

Согласно данному методу минимум ищется в направлении

- ищется на каждом шаге мини минимизацией

- некоторая симметричная положительно определённая матрица, которая при переходит в матрицу Гессе. Обычно при

достоинства этого метода высокая скорость сходимости, простота вычисления

- будем искать методом золотого сечения.

Параметры регулятора:

Рис.12. Графики переходных характеристик системы

3. Синтез робастного регулятора матричным методом.

Одним из возможных и перспективных способов решения задачи синтеза регуляторов является использования метода матричных операторов. Достоинством данного метода является возможность его применения для различных классов систем, в том числе нелинейных и нестационарных.

Рассмотрим линейную систему без неопределенности, описываемую в форме матричных операторов:

Очевидно, что для линейной системы без неопределенности справедливы следующие зависимости: ; ; .

Получаем следующую формулу расчета спектральной характеристики выходного сигнала:

Спектральная характеристика невязки между эталонной и реальной переходными характеристиками имеет вид:

,

где – варьируемые параметры корректирующих устройств, подлежащие определению.

В приведенной формуле используется зависимость , усложняющая вычислительный процесс. Можно воспользоваться другим, более простым подходом. Определим спектральную характеристику невязки следующим образом:

.

Перейдем к системе с неопределенностью:

,

где – матричный оператор объекта, элементы которого зависят от .

Необходимо минимизировать целевую функцию вида: ,

где – число элементов выборки.

Полученный функционал содержит полную информацию о параметрической неопределенности.

В качестве корректирующего устройства выберем ПИД-регулятор:

.

Пусть выборка составляет 1000 элементов. В качестве эталонного сигнала выберем . В качестве ортонормированного базиса выберем систему функций Уолша (128 функций). Интервал исследования – .

имеют интервальную неопределённость 20%

Приведем здесь клетку матричного оператора интегрирования:

Получены следующие значения коэффициентов регулятора:

Несколько примеров для произвольно взятых , на которых представлены переходные характеристики эталонной системы и 4-х из семейства систем представлены на рис. 13.

Рис. 13. Графики эталонной и реальной переходных характеристик для разных значений параметра : , , , ,

Приложение.

Программа 1.

Решения уравнения методом Стеффенсена.

function Stefens

clc

e=10.^-5;

x=-20;

x1=0;

i=0;

As=0.0125*(x.^3)+0.3*(x.^2)+4.886*x+61.72;

x=x-(As.^2)./((0.0125*((x+As).^3)+0.3*((x+As).^2)+4.886*(x+As)+61.72)+As);

As=0.0125*(x.^3)+0.3*(x.^2)+4.886*x+61.72;

A(1)=x;

i=i+1;

while abs(x-x1)>e

x1=x;

x=x-(As.^2)./((0.0125*((x+As).^3)+0.3*((x+As).^2)+4.886*(x+As)+61.72)+As);

As=0.0125*(x.^3)+0.3*(x.^2)+4.886*x+61.72;

A(i+1)=x;

i=i+1;

end

plot(1,A(1));

hold on

for n=1:i

plot(n,A(n),'b-o')

end

grid on

xlabel('iteraciya')

ylabel('roots')

disp('ответ');

disp(x);

disp('число итераций');

disp(i);

Программа 2.

Решение дифференциального уравнения численным способом.

clc

a2=24;

a1=390.88;

a0=4937.6;

b2=0;

b3=0;

b1=230.88;

b0=4617.6;

f1=b2;

f2=b1-a1*f1;

f3=b0-a1*f1-a2*f2;

B=[f1;f2;f3]

A=[0 1 0; 0 0 1;-a0 -a1 -a2]

h=0.02;

Xt=[0;0;0];

X(1,1)=Xt(1);

X(1,2)=Xt(2);

X(1,3)=Xt(3);

F=A*Xt+B;

% Разгонный метод

K1=h*F;t(1)=0;

K2=h*(F+K1/3);

K3=h*(F+K2/6+K1/6);

K4=h*(F+K1/8+3/8*K2);

K5=h*(F+K1/2-3/2*K3+2*K4);

Xt=Xt+(1./6)*(K1+4*K4+K5);

X(2,1)=Xt(1);

X(2,2)=Xt(2);

X(2,3)=Xt(3);

t(2)=t(1)+h;

F=A*Xt+B;

i=2;

%Неявный метод второго порядка

while t(i)<1.6

X1(1)=X(i-1,1);

X1(2)=X(i-1,2);

X1(3)=X(i-1,3);

Xt=Xt+(h./12)*(5*B+8*(A*Xt+B)-(A*X1'+B));

Xt=((eye(3)-(5./12)*h*A)^-1)*Xt;

X(i+1,1)=Xt(1);

X(i+1,2)=Xt(2);

X(i+1,3)=Xt(3);

t(i+1)=t(i)+h;

i=i+1;

end

h=0.9352-0.0629*exp(-17.6849*(t))-(0.8723*cos(16.4082*(t))-0.2357*sin(16.4082*(t))).*exp(-3.1576*(t));

for j=1:i

V(j)=X(j,1);

end

E=h-V;

plot(t,V,t,h,t,E); grid on

Программа 3.

Анализа заданной системы с использованием спектрального метода.

syms t T;

Kx=(4937.6./2)*(t-T).^2-390.88*(1./2)*(-2*(t-T))+24;

Ky=(4617.6./2)*(t-T).^2-230.88*(1./2)*(-2*(t-T));

for i=0:9

F6=0;

for j=0:i

m=i;

K=(sqrt(1.1552)*exp(-(1.1552*t)./2));

F=(factorial(m))./(factorial(m-j));

F1=((-1.1552*t).^j);

F2=(factorial(j)).^2;

F3=K.*F;

F4=F1./F2;

F5=F3.*F4;

F6=F6+F5;

L(i+1)=F6;

end

end

for i=0:9

F6=0;

for j=0:i

m=i;

K=(sqrt(1.1552)*exp(-(1.1552*T)./2));

F=(factorial(m))./(factorial(m-j));

F1=((-1.1552*T).^j);

F2=(factorial(j)).^2;

F3=K.*F;

F4=F1./F2;

F5=F3.*F4;

F6=F6+F5;

L1(i+1)=F6;

end

end

G=L'*L1;

In=Kx*G;

r=int(In,T,0,t);

Cx=int(r,t,0,1.5);

In=Ky.*G;

r=int(In,T,0,t);

Cy=int(r,t,0,1.5);

A=((Cx+eye(10))^-1)*Cy;

Cy=int(L,t,0,1.5);

Cx=A*Су'

function H=fun(t)

Cx=[-0.1275; 0.5090; 0.2483; 0.0697; -0.0459; -0.1140; -0.1472; -0.1555; -0.1468; -0.1275];

for i=0:9

F6=0;

for j=0:i

m=i;

K=(sqrt(1.1552)*exp(-(1.1552*t)./2));

F=(factorial(m))./(factorial(m-j));

F1=((-1.1552*t).^j);

F2=(factorial(j)).^2;

F3=K.*F;

F4=F1./F2;

F5=F3.*F4;

F6=F6+F5;

L(i+1)=F6;

end

end

H=(Cx'*L');

Программа 3.

Минимизация функционала.

function K=minF(X)

% Kn=X(1);

% Ku=X(2);

% Kd=X(3);

X=[0.7;

0.7;

0.7];

Kn=X(1);

Ku=X(2);

Kd=X(3);

clc

%--ПЕРЕМЕННЫЕ--%

e=0.0001;

l=1;

t=0;

h=0.001;

J1=1;

J=0;

J2=-1;

I=11;

I1=32;

alph=-10;

Xe=1-exp(alph*t);

H=eye(3);

H1=H;

Kn1=Kn+10^-3;

Kd1=Kd+10^-3;

Ku1=Ku+10^-3;

X1=[Kn1;Ku1;Kd1];

while (abs(J1-I)>e)

%--ГРАДИЕНТ--%

X3=[Kn;Ku;Kd];

U=Dif2([X3]);

J1=0;

i=1;

t=0;

while (t<2)

J1=J1+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

X3=[Kn+10^-3;Ku;Kd];

U=Dif2([X3]);

J=0;

i=1;

t=0;

while (t<2)

J=J+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

g1=(J-J1)/10^-3;

X3=[Kn;Ku+10^-3;Kd];

U=Dif2([X3]);

J=0;

t=0;

i=1;

while (t<2)

J=J+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

g2=(J-J1)/10^-3;

X3=[Kn;Ku;Kd+10^-3];

U=Dif2([X3]);

J=0;

t=0;

i=1;

while (t<2)

J=J+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

g3=(J-J1)/10^-3;

I1=J;

GradJ=[g1;g2;g3];

%--НОВОЕ ЗНАЧЕНИЕ Х--%

X1=X1-l*H*GradJ;

X=X1;

Kn1=X(1);

Ku1=X(2);

Kd1=X(3);

Kn=Kn1;

Ku=Ku1;

Kd=Kd1;

X3=[Kn;Ku;Kd];

U=Dif2([X3]);

J1=0;

i=1;

t=0;

while (t<2)

J1=J1+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

X3=X1+[10^-3;0;0];

U=Dif2([X3]);

J=0;

t=0;

i=1;

while (t<2)

J=J+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

g11=(J-J1)/10^-3;

X3=X1+[0;10^-3;0];

U=Dif2([X3]);

J=0;

t=0;

i=1;

while (t<2)

J=J+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

g21=(J-J1)/10^-3;

X3=X1+[0;0;10^-3];

U=Dif2([X3]);

J=0;

t=0;

i=1;

while (t<2)

J=J+(1-exp(alph*t)-U(i))^2;

t=t+h;

i=i+1;

end

I=J;

g31=(J-J1)/10^-3;

GradJ1=[g11;g21;g31];

U1=GradJ1-GradJ;

V=l*H*GradJ;

A=(V*V')/(V'*U1);

B=-(H*U1*U1')/(U1'*H*U1);

H1=H+A+B;

if J1>I

l=min_lz(X,l,H,GradJ);

X1=X;

end

X=X1;

Kn1=X(1);

Ku1=X(2);

Kd1=X(3);

Kn=Kn1;

Ku=Ku1;

Kd=Kd1;

end

Kn

Ku

Kd

function la=min_l(X,l,H,GradJ)

b=1;

a=0;

e=0.05;

x4=10;

x2=a+(-1+sqrt(1+4*(b-a)))/(2);

while (abs(x2-x4)>e)

x4=a+b-x2;

F2=X-x2*H*GradJ;

F4=X-x2*H*GradJ;

if norm(F2)

b=x4;

else

x2=x4;

a=x2;

end

end

X=[0.43101603658062

0.78399472393963

0.05296602599762];

Kn=X(1);

Ku=X(2);

Kd=X(3);

a4=693/693;

a3=(160000*Kd+16632)/693;

a2=(110880+160000*Kn+3200000*Kd)/693;

a1=(160000*Ku+221760+3200000*Kn)/693;

a0=3200000*Ku/693;

b4=0;

b3=160000*Kd/693;

b2=(3200000*Kd+160000*Kn)/693;

b1=(3200000*Kn+160000*Ku)/693;

b0=3200000*Ku/693;

H=tf([b4 b3 b2 b1 b0],[a4 a3 a2 a1 a0]);

h=tf([10],[1 10]);

ltiview(H,h);

function Xre=Dif2(X)

Kn=X(1);

Ku=X(2);

Kd=X(3);

a4=693/693;

a3=(160000*Kd+16632)/693;

a2=(110880+160000*Kn+3200000*Kd)/693;

a1=(160000*Ku+221760+3200000*Kn)/693;

a0=3200000*Ku/693;

b4=0;

b3=160000*Kd/693;

b2=(3200000*Kd+160000*Kn)/693;

b1=(3200000*Kn+160000*Ku)/693;

b0=3200000*Ku/693;

f0=b4;

f1=b3-a3*f0;

f2=b2-a2*f0-a3*f1;

f3=b1-a1*f0-a2*f1-a3*f2;

f4=b0-a0*f0-a1*f1-a2*f2-a3*f3;

B=[f1;f2;f3;f4];

A=[0 1 0 0;

0 0 1 0;

0 0 0 1;

-a0 -a1 -a2 -a3];

h=0.001;

Xt=[0;0;0;0];

X(1,1)=Xt(1);

X(1,2)=Xt(2);

X(1,3)=Xt(3);

X(1,4)=Xt(4);

F=A*Xt+B;

% Разгонный метод

K1=h*F;t(1)=0;

K2=h*(F+K1/3);

K3=h*(F+K2/6+K1/6);

K4=h*(F+K1/8+3/8*K2);

K5=h*(F+K1/2-3/2*K3+2*K4);

Xt=Xt+(1./6)*(K1+4*K4+K5);

X(2,1)=Xt(1);

X(2,2)=Xt(2);

X(2,3)=Xt(3);

X(2,4)=Xt(4);

t(2)=t(1)+h;

F=A*Xt+B;

i=2;

%Неявный метод второго порядка

while t(i)<5

X1(1)=X(i-1,1);

X1(2)=X(i-1,2);

X1(3)=X(i-1,3);

X1(4)=X(i-1,4);

Xt=Xt+(h./12)*(5*B+8*(A*Xt+B)-(A*X1'+B));

Xt=((eye(4)-(5./12)*h*A)^-1)*Xt;

X(i+1,1)=Xt(1);

X(i+1,2)=Xt(2);

X(i+1,3)=Xt(3);

X(i+1,4)=Xt(4);

t(i+1)=t(i)+h;

i=i+1;

end

for j=1:i

V(j)=X(j,1);

end

Xre=V;

Программа 4.

Синтез робастного регулятора.

function I=Robsist(X)

Kp=X(1);

Ku=X(2);

Kd=X(3);

clc

N=128; %Число функций Уолша

% syms Kp Ku Kd;

m=1000;

T=1.5;

h=T/(N-1);

K0=0.2*(0.8+0.4*rand(m,1));

Ky=100*(0.8+0.4*rand(m,1));

Ce=0.0105*(0.8+0.4*rand(m,1));

Jp=165*(0.8+0.4*rand(m,1));

ta=0.05*(0.8+0.4*rand(m,1));

al=0.2*(0.8+0.4*rand(m,1));

Tm=0.25*(0.8+0.4*rand(m,1));

Int=m_intM(T,N);

I=eye(N);

H=hadamard(N); %построение матрицы Адамара

for i=0:(N-1)

t=i*h;

f(i+1)=y(t);

end

Cy=(1/sqrt(N)*H)*f';%спектр входа

for i=0:(N-1)

t=i*h;

f(i+1)=xe(t); %эталонный выход

end

Cx=(1/sqrt(N)*H)*f';%спектр эталонного выхода

for k=1:m

a4=Ce(k)*Tm(k)*ta(k);

a3=(Ky(k)*Jp(k)*Kd*ta(k)+Ce(k)*Tm(k)+Ce(k)*ta(k));

a2=(Ce(k)*Ky(k)*Jp(k)^2*K0(k)*ta(k)+Ky(k)*Jp(k)*Kd+Ky(k)*Jp(k)*Kp*ta(k)+Ce(k));

a1=(Ce(k)*Ky(k)*Jp(k)^2*K0(k)*al(k)+Ky(k)*Jp(k)*Ku*ta(k)+Ky(k)*Jp(k)*Kp);

a0=Ky(k)*Jp(k)*Ku;

b3=Ky(k)*Jp(k)*Kd*ta(k);

b2=(Ky(k)*Jp(k)*Kp*ta(k)+Ky(k)*Jp(k)*Kd);

b1=(Ky(k)*Jp(k)*Ku*ta(k)+Ky(k)*Jp(k)*Kp);

b0=Ky(k)*Jp(k)*Ku;

E=(a4*I+a3*Int+a2*Int*Int+a1*Int*Int*Int+a0*Int*Int*Int*Int)*Cx-(b3*Int+b2*Int*Int+b1*Int*Int*Int+b0*Int*Int*Int*Int)*Cy;

E1(k)=E'*E;

end

I=sum(E1(k));

X=[0.05189976146807 0.39467280591765 0.00047228019868];

Kp=X(1);

Ku=X(2);

Kd=X(3);

m=100;

K0=0.2*(0.8+0.4*rand(m,1));

Ky=100*(0.8+0.4*rand(m,1));

Ce=0.0105*(0.8+0.4*rand(m,1));

Jp=165*(0.8+0.4*rand(m,1));

ta=0.05*(0.8+0.4*rand(m,1));

al=0.2*(0.8+0.4*rand(m,1));

Tm=0.25*(0.8+0.4*rand(m,1));

for k=1:m

a4=Ce(k)*Tm(k)*ta(k);

a3=(Ky(k)*Jp(k)*Kd*ta(k)+Ce(k)*Tm(k)+Ce(k)*ta(k));

a2=(Ce(k)*Ky(k)*Jp(k)^2*K0(k)*ta(k)+Ky(k)*Jp(k)*Kd+Ky(k)*Jp(k)*Kp*ta(k)+Ce(k));

a1=(Ce(k)*Ky(k)*Jp(k)^2*K0(k)*al(k)+Ky(k)*Jp(k)*Ku*ta(k)+Ky(k)*Jp(k)*Kp);

a0=Ky(k)*Jp(k)*Ku;

b3=Ky(k)*Jp(k)*Kd*ta(k);

b2=(Ky(k)*Jp(k)*Kp*ta(k)+Ky(k)*Jp(k)*Kd);

b1=(Ky(k)*Jp(k)*Ku*ta(k)+Ky(k)*Jp(k)*Kp);

b0=Ky(k)*Jp(k)*Ku;

H(k)=tf([b3 b2 b1 b0],[a4 a3 a2 a1 a0]);

end

h=tf([10],[1 10]);

ltiview(H(1),H(10),H(45),H(78),H(58),h);

Литература.

  1. Вержбитский Численные методы. – М.: Наука, 1987

  2. Методы классической и современной теории автоматического управления: Учебник в 5-ти т.; 2-е изд., перераб. и доп. Т.3: Синтез регуляторов систем автоматического управления / Под редакцией К.А. Пупкова и Н.Д. Егупова. – М.: Издательство МГТУ им. Н.Э. Баумана, 2004. – 616с.; ил.

Характеристики

Тип файла
Документ
Размер
9,19 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7001
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}