125687 (690641), страница 3
Текст из файла (страница 3)
Н
Проверка:
– реакции определены правильно.
Строим эпюру моментов Мz (см. рис. 3).
5.2 Проверочный расчет подшипников
При проектировочном расчете валов на промежуточном валу мы приняли шариковые радиальные однорядные подшипники средней серии №306 по ГОСТ 8338–75 с динамической грузоподъемностью С = 28100 Н и статической грузоподъемностью С0 = 14600 Н.
Подшипник в опоре В нагружен большими силами, поэтому проверочный расчет выполняем для него.
Радиальную силу в подшипнике определим по формуле:
Н
Для радиальных шарикоподшипников величину эквивалентной нагрузки определяем по формуле:
где X и Y – коэффициенты отношения осевой нагрузки к радиальной, в нашем случае Fа = 0, и Y = 0, Х = 1;
V – коэффициент вращения, V = 1 (т. к. вращается внутреннее кольцо);
Кб – коэффициент безопасности, по табл. 9.4 (с. 72, [1]) выбираем Кб = 1,3;
Кт – температурный коэффициент, при рабочей температуре подшипниковых узлов < 100С Кт = 1.
Тогда:
Н
Номинальную долговечность вычисляем по формуле:
, млн. об.
где m = 3 для шарикоподшипников. Тогда:
млн. об.
Долговечность подшипника в часах:
ч t = 21600 ч
Подшипники подобраны правильно.
5.3 Расчет вала на усталостную прочность
Расчет на усталостную прочность производим для двух наиболее опасных сечений вала: I–I и II–II (см. рис. 3).
Определяем изгибающие моменты, действующие в опасных сечениях вала:
-
в сечении I–I
Нм
Нм
Нм
-
в сечении II–II:
Нм
Нм
Нм
Крутящий момент в обоих сечениях составляет Мкр = 110 Нм.
Расчет на усталостную прочность проводится в форме определения коэффициента запаса прочности n для опасных сечений вала. Условие прочности имеет вид:
где [n] – требуемый коэффициент запаса прочности. По рекомендациям с. 76 ([1]) принимаем [n] = 3;
n и n – коэффициенты запаса прочности по нормальным и касательным напряжениям:
где -1 и -1 – пределы выносливости материала вала при изгибе и при кручении с симметричным знакопеременным циклом нагружения. По рекомендациям с. 76 ([1]) для стали 12ХН3А принимаем:
МПа
МПа;
а; а и m; m – амплитуды и средние напряжения циклов нормальных и касательных напряжений. Обычно напряжения в поперечном сечении вала при изгибе изменяются по симметричному циклу, а при кручении – по пульсирующему (отнулевому) циклу. Тогда:
;
;
и – коэффициенты, характеризующие чувствительность материала к асимметрии цикла нагружения. По ГОСТ 25.504–82 рекомендуется принимать:
К и К – эффективные коэффициенты концентрации напряжений при изгибе и кручении;
и – коэффициенты, учитывающие влияние поперечных размеров вала;
– коэффициент поверхностного упрочнения, для неупрочненных валов = 1.
-
Сечение I–I.
Моменты сопротивления изгибу и кручению сечения:
м3
м3
Напряжения в сечении:
МПа;
МПа.
Коэффициенты:
К = 3,5 (табл. 12.1, с. 78 [1])
К = 2,1 (табл. 12.1, с. 78 [1])
= 0,746 (табл. 12.2, с. 79 [1])
= 0,792 (табл. 12.2, с. 79 [1])
Коэффициенты запаса прочности:
– условие прочности выполняется.
-
Сечение II–II.
Моменты сопротивления изгибу и кручению сечения:
м3
м3
Напряжения в сечении:
МПа;
МПа.
Коэффициенты:
К = 2,0 (табл. 12.1, с. 78 [1])
К = 1,9 (табл. 12.1, с. 78 [1])
= 0,746 (табл. 12.2, с. 79 [1])
= 0,792 (табл. 12.2, с. 79 [1])
Коэффициенты запаса прочности:
– условие прочности выполняется.
Таким образом, усталостная прочность промежуточного вала обеспечивается.
6. Конструирование корпуса редуктора.
Поскольку редуктор работает в тяжелом режиме, то материал для изготовления корпуса редуктора принимаем СЧ 20 ГОСТ 1412–85.
Основные размеры корпуса редуктора принимаем по следующим зависимостям:
-
толщина стенки основания корпуса
мм, принимаем
мм;
-
толщина стенки крышки корпуса
мм, принимаем
мм;
-
толщина ребра в основании
мм;
-
толщина подъемного уха
мм, принимаем
мм;
-
диаметр стяжного болта
мм, принимаем
мм;
-
диаметр штифта
мм, принимаем
;
-
толщина фланца по разъему
мм;
-
диаметр фундаментного болта
мм, принимаем
мм;
-
толщина лапы для крепления к полу
мм.
Литература
1. Детали машин и основы конструирования. Методические указания к выполнению курсового проекта для студентов IV курса.– М.: РГОТУПС, 2004. – 100 с.
2. Детали машин и основы конструирования. Расчет ременных передач. Расчет цепных передач. Методические указания к выполнению курсового проекта для студентов IV курса.–М.: РГОТУПС, 2005. – 64 с.
3. Анурьев В.И. Справочник конструктора – машиностроителя: В 3-х т.: Т. 2. – 8-е изд., перераб. и доп. Под ред. И.Н. Жестковой. – М.: Машиностроение, 2001. – 912 с., илл.