125469 (690557), страница 2

Файл №690557 125469 (Синтез и анализ машинного агрегата) 2 страница125469 (690557) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Группа АссураII1(2,3).

Внешними точками группы являются точки А и О3, внутренней – точка В. Составляется система векторных уравнений, связывающих скорость внутренней точки со скоростями внешних точек:

По этой системе строится план скоростей и определяются модули скоростей:

VB = (pb) · kV = 45 · 0,04 = 1,80 м/c;

VBA = (ab) ∙ kV = 102 ∙ 0,04 = 4,08 м/c.

Скорости точек S2 и С находятся с помощью теоремы подобия. Составляется пропорция, связывающая чертёжные размеры звена 2 (АВ, АS2) с отрезками плана скоростей:

откуда определяется длина неизвестного отрезка.

Этот отрезок откладывается на отрезке ab плана скоростей. Точка S2 является концом вектора , начало всех векторов в полюсе р. Поэтому отрезок ps2 = 70,5 мм (определено замером) изображает вектор .

Модуль вектора

VS2 = (ps2) ∙ kV = 70,5 ∙ 0,04 = 2,82 м/c.

Скорость точки С определяется аналогично по принадлежности звену 3.

Определяются величины угловых скоростей звеньев 2 и 3:

Для определения направления ω2 отрезок ab плана скоростей устанавливается в точку В, а точка А закрепляется неподвижно; тогда становится очевидным, что ω2 направлена по часовой стрелке. Для определения направления ω3 отрезок pb плана скоростей устанавливается в точку В, а точка О3 закрепляется неподвижно; тогда становится очевидным, что ω3 также направлена по часовой стрелке.

Группа Ассура II2(4,5).

Внешними точками группы являются точки С и D0 (точка D0 принадлежит стойке), внутренней – точка D, принадлежащая звеньям 4 и 5 (в дальнейшем обозначается без индексов).

Рис.4. Определение направлений угловых скоростей

По принадлежности точки D звену 5 вектор её скорости известен по направлению: Поэтому для построения плана скоростей для данной группы Ассура достаточно одного векторного уравнения:

В результате построения плана скоростей определяются:

VD = (pd) ∙ kV = 55 ∙ 0,04 = 2,20 м/c;

VDC = (cd) kV = 16,5 ∙ 0,04 = 0,66 м/c.

Скорость точки S4 определяется по принадлежности звену 4 аналогично определению скорости точки S2 по теореме подобия…

Звено 5 совершает поступательное движение, поэтому скорости всех точек звена одинаковы и равны скорости точки D.

Величина угловой скорости звена 4 определяется аналогично предыдущему:

Для определения направления ω4 отрезок cd плана скоростей устанавливается в точку D, а точка С закрепляется неподвижно; тогда становится очевидным, что ω4 направлена по часовой стрелке.

1.5.2 Построение плана ускорений

Механизм I класса (звено 1).

Точка А кривошипа 1 совершает вращательное движение вокруг О1, поэтому её ускорение есть сумма нормального и тангенциального ускорения:

Поскольку принято n1 = const (следовательно ε1 = 0), то

Модуль ускорения

На плане скоростей этот вектор изображается отрезком πа = 158 мм,

направленным от А к О1. Тогда масштаб плана ускорений

Группа Ассура II1(2,3).

Внешними точками группы являются точки А и О3, внутренней – точка В. Составляется система векторных уравнений, связывающих ускорение внутренней точки с ускорениями внешних точек:

В этой системе модули нормальных ускорений

На плане ускорений векторы и изображаются отрезками

an`=

В результате построения плана ускорений определяются модули ускорений:

AB = (πb) ∙ ka = 127 ∙ 1 = 127 м/c ;

∙ka = 26 ∙ 1 = 26 м/c ;

= (n``b) ∙ ka = 126,5 ∙ 1 = 126,5 м/c .

Ускорение точек S2 и С находятся с помощью теоремы подобия.

Составляется пропорция, связывающая чертёжные размеры звена 2 (АВ, АС2) с отрезками плана ускорений:

откуда определяется длинна неизвестного отрезка.

Этот отрезок откладывается на отрезке ab плана ускорений. Соединением полюса π с точкой s2 получается отрезок πs2 = 147,5 мм (определено замером).

Модуль ускорения точки s2

aS2 = (πs2) ∙ ka = 147,5 ∙ 1 = 147,5 мм/c .

Ускорение точки С определяются аналогично по принадлежности звену 3.

Определяются величины угловых ускорений звеньев 2 и 3:

.

Для определения направления ε2 отрезок n`b плана ускорений устанавливается в точку В, а точка А закрепляется неподвижно; тогда становится очевидным, что ε2 направлена против часовой стрелки. Для определения направления ε3 отрезок n``b плана ускорений устанавливается в точку В, а точка О3 закрепляется неподвижно; тогда становится очевидным, что ε3 направлена по часовой стрелке.

Рис. 5. Определение направлений угловых ускорений

Группа Ассура II2(4,5).

Внешними точками группы являются точки С и D0 (точка D0 принадлежит стойке), внутренней – точка D, принадлежащая звеньям 4 и 5 (в дальнейшем обозначается без индексов).

По принадлежности точки D звену 5 вектор её ускорения известен по направлению: D // x-x. Поэтому для построения плана ускорений для данной группы Ассура достаточно одного векторного уравнения:

.

В этом уравнении модуль нормального ускорения

На плане ускорений вектор изображается отрезком

В результате построения плана ускорений определяются модули ускорений:

aD = (πd) · ka = 156 · 1 = 156 м/c

= (n```d) · ka = 36 · 1 = 36 м/c .

Ускорение точки S4 определяется по принадлежности звену 4 аналогично определению ускорению точки S2 по теореме подобия…

Величина углового ускорения звена 4 определяется аналогично предыдущему:

.

Для определения направления ε4 отрезок n```d плана ускорений устанавливается в точку D, а точка С закрепляется неподвижно; тогда становится очевидным, что ε4 направлена по часовой стрелке.

1.6 Силовой расчёт


1.6.1 Определение инерционных факторов

Инерционные силовые факторы – силы инерции звеньев Риi и моменты сил инерции Миi определяются по выражениям:

Расчёт инерционных силовых факторов сведён в таблице 1.4.

Таблица 1.4

Определение инерционных силовых факторов механизма

Звено(i)

1

2

3

4

5

Gi, H

100

146

180

50

60

Isi, кгм

0,051

1,388

2,601

0,056

0

asi, м/c

0

147,5

0

157

156

εi, 1/c

0

35,62

316,25

144

0

Pиi, Hм

0

2195,2

0

800,2

954,1

Миi, Нм

0

49,44

822,57

8,06

0

Силовой расчёт проводится в последовательности, противоположной направлению стрелок в формуле строения (1.3).

1.6.2 Силовой расчёт группы Ассура II2(4,5)

На листе 1 проекта построена схема нагружения группы в масштабе

КS = 0,0025 . Силовой расчёт состоит из четырёх этапов.

1. Составляется сумма моментов сил, действующих на звено 4, относительно шарнира D:

,

где hG4 = 66,5 мм, hИ4 = 4,5 мм – чертёжные плечи сил G4 и РИ4, определяемые замером на схеме нагружения группы. Из уравнения имеем:

Так как > 0, то её действительное направление соответствует предварительно выбранному.

2. Составляется векторная сумма сил, действующих на группу:

Для построения плана сил по этому уравнению принимается масштаб

kp = 10 Н/мм. Определяются длины отрезков (табл. 1.5.)

Таблица 1.5

Длины отрезков, изображающих известные силы

Сила

Q

G5

PИ5

G4

PИ4

Модуль, Н

2640

60

954,1

50

800,2

35

Отрезок

fg

ef

de

cd

bc

ab

Длинна, мм

264

6

95,4

5

5

3,5

В ре5зультате построения плана сил находятся длины отрезков (замером) gh = 39,5 мм, hb = 440,5 мм и определяются модули реакции

RO5 = (gh) · KP = 39,5 · 10 = 395H; R34 = (hb) · KP = 440,5 · 10 = 4405H.

3. Составляется векторная сумма сил, действующих на звено5:

По этому уравнению достраивается план сил группы и определяется отрезок hd = 361 мм, тогда модуль неизвестной реакции

R45 = (hd) · KP = 361 · 10 = 3610H .

4. Для определения точки приложения реакции R05 в общем случае следует составить сумму моментов сил, действующих на звено 5, относительно шарнира D. Однако в рассматриваемом механизме в этом нет необходимости: силы, действующие на звено 5, образуют сходящуюся систему, поэтому линия действия реакции R05 проходит через шарнир D.

1.6.3 Силовой расчёт группы Ассура II1(2,3)

На листе 1 проекта построенна схема нагружения группы в масштабе

КS = 0,005 м/мм. Силовой расчёт состоит из четырёх этапов:

1. Составляется сумма моментов сил, действующих на звено 2, относительно шарнира В:

Характеристики

Тип файла
Документ
Размер
65,48 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6998
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}