125426 (690543)
Текст из файла
ПРИВОД К ГОРИЗОНТАЛЬНОМУ ВАЛУ
(редуктор цилиндрический)
Содержание
Введение
1 Выбор двигателя и кинематический расчет привода
2 Расчёт привода редуктора
3 Расчет редуктора
3.1 Выбор материала и расчёт допускаемых напряжений
3.2 Геометрический расчёт редуктора
3.3 Проверочный расчёт зубьев на контактную прочность
3.4 Проверка передачи на отсутствие растрескивания
3.5 Проверка зубьев на усталостную прочность при изгибе
4 Предварительный расчет валов
5 Подбор шпонок и проверка шпоночных соединений
6 Компоновка редуктора
7 Уточненный расчет валов
8 Проверка долговечности подшипников
9 Выбор смазки редуктора
10 Проверка прочности шпоночных соединений
11 Подбор и расчёт муфты
11 Список используемой литературы
-
Выбор электродвигателя. Кинематический и силовой расчёты привода.
-
Выбор электродвигателя
Требуемая мощность электродвигателя:
P =3,5 кВт.
Pэд P
. По ГОСТ 19523-81 выбираем обдуваемый электродвигатель единой серии 4А, стандартной мощности: Pэд = 4 кВт.
Частота вращения вала электродвигателя определяется по зависимости
nэд = nпр·uцил·uрем. Здесь uцил, uрем – передаточные числа цилиндрической и ремённой передач, рекомендуемые значения для зубчатой цилиндрической передачи 2,0…5, для ремённой 1,5…3,5.
nэд = 210·3,5·1,9=1396,5 об/мин.
Воспользовавшись рекомендациями [4, с. 333] найдём наиболее близкую частоту вращения стандартного двигателя. Выбрали двигатель типа 4А100L4, nэд=1430 об/мин.
-
Определение передаточных чисел привода
Общее передаточное число привода
uпр= 6,8.
По ГОСТ 2185-66 возьмём стандартные значения передаточных чисел (uцил=3,5; uрем=2)
uпр ст = uцил ст·uрем ст = 3,5·2 = 7.
По ГОСТ 2185-66 uпр ст =7,1
Отклонение стандартного значения 0передаточного числа от фактического значения передаточного числа не должно превышать 4%. В данном случаи
1.3. Определение частот вращения и крутящих моментов на валах
Частота вращения на входном (быстроходном) валу
n1 = 735 об/мин.
Частота вращения на выходном (тихоходном) валу
n2 = 215 об/мин.
Крутящий момент на приводном валу
Tпр = T2
Крутящий момент на ведущем шкиве ремённой передачи (на валу электродвигателя)
Tэд = 26,7 Н·м.
Крутящий момент на входном валу редуктора
T1 = 26,7∙0,95∙1,9=48,19 Н·м.
Крутящий момент на выходном валу редуктора
T2 = 48,19∙3,5∙0,97=163,6 Н·м.
-
Выбор материалов и определение допускаемых напряжений
По типу производства назначаем вид термообработки: для серийного производства – улучшение для колеса и закалка ТВЧ для шестерни (Токи Высокой Частоты).
Для изготовления колёс принимаем сталь 40Х, как наиболее распространённую в общем редукторостроении.
Шестерня: HRC1 = 45; в = 1500 МПа; т = 1300 Мпа.
Колесо: HВ2 = 250; в = 850 МПа; т = 550 Мпа.
-
Определение допускаемых контактных напряжений для шестерни
. Закалка ТВЧ
H lim b 1 = 17· +200 = 17·45+200 =965 МПа (предел выносливости по контактным напряжениям).
SH 1 = 1,2 (коэффициент запаса безопасности).
NHE 1 =
= 60·735·1500·(2,23·10-4+13·0,4+0,63·0,4+0,33·0,2) = 326·106 (эквивалентное число циклов).
m=9 (показатель кривой усталости), так как HB>350.
NHO 1 = 30·(10 )2,4 = 30·(10·45)2,4 = 70·106 (базовое число циклов).
Так как NHE1>NHO1, то KHL 1 = 1 (коэффициент долговечности).
= 804 МПа.
2.2 .Определение допускаемых контактных напряжений для колеса
Улучшение
H lim b 2 = 2· +70 = 2·250+70 =570 МПа.
SH 2 = 1,1.
NHE 2 = = 93·106.
NHO 2 = 30·( )2,4 = 30·2502,4 = 17,1·106.
Так как NHE2>NHO2, то KHL 2 = =1.
=518 МПа.
Расчётное значение допускаемых контактных напряжений
[H]р = [H]min = 518 МПа.
Допускаемые контактные напряжения при перегрузке
[H]max 2 = 2,8·Т =2,8·550 =1540 МПа.
[H]max 1 = 40·HRC =40·45 =1600 МПа.
-
Допускаемые изгибные напряжения для шестерни и колеса
2.3.1 Определяем допускаемые значения для шестерни
F lim b 1 = 650 МПа.
SF1 = 1,75 (коэффициент запаса).
KFC1 = 1, так как передача нереверсивная.
NFO1 = 4·106.
NFE1 = 60·735·1500·(2.29·10-4+0,4+0.69·0,4+0,39·0,2) = 347·106.
Так как NFE1>NFO1, то KFL1=1.
[F]1 = 371,4 МПа.
2.3.2 Определяем допускаемые значения для колеса
F lim b 2 =1,8∙ =1,8∙250=450 МПа.
Допускаемые изгибные напряжения при перегрузке
[F]max = 0,6·в = 0,6·1500 = 900 МПа.
SF2 = 1,75 (коэффициент запаса).
KFC2 = 1, так как передача нереверсивная.
NFO2 = 4·106.
NFE2 = 99·106.
Так как NFE2>NFO2, то KFL2=1.
[F]2 = 260 МПа.
Допускаемые изгибные напряжения при перегрузке
[F]мах1=0,6·в1=0,6·1500=900 МПа.
[F]мах2=0,8·т2=0,8·550=440 МПа.
-
Расчёт цилиндрической прямозубой передачи
-
Проектный расчёт цилиндрической прямозубой передачи
Межосевое расстояние
.
Ka = 490 МПа .
KH = 1,2 (коэффициент, учитывающий концентрацию нагрузки).
ba = 0,315 (коэффициент ширины колеса).
127 мм.
По рекомендации [2, с. 246] выбираем стандартное рекомендуемое межосевое расстояние
а = 160 мм.
2. Назначаем нормальный модуль по соотношению
mn = (0,01…0,02)·а 2 мм.
mn = (0,01…0,02)·160 = (1,6…3,2) мм.
По ГОСТ 9563-80 принимаем стандартный m = 4, так как для силовых передач m 2 мм.
3. Определяем число зубьев шестерни и колеса
Число зубьев шестерни
.
z1 = 17.7>17.
Принимаем z1 = 18.
Число зубьев колеса
z2 = u·z1 = 3.5·18 = 63.
4. Уточняем передаточное число
uф = 3.5.
Отклонений от требуемого u нет (допускается 4%).
5. Определяем диаметры делительных окружностей колёс
d1 = mn ·z1 = 4·18 = 72 мм.
d2 = mn ·z2 = 4·63 = 252 мм.
6. Проверка межосевого расстояния
а = 0,5·(d1+d2) = a .
а = 0,5·(72+252) = 162 мм. = а = 160 мм.
7. Определяем ширину зубчатых колёс
b2 = ba·a = 0,315·160 = 50,4 мм.
По ГОСТ 6636-69 округляем до стандартного значения
b2 = 55 мм.
Ширину зубчатого венца шестерни назначим на (5…8) мм. больше
b1 = b2+(5…8) = 55+(5…8) = (60…63) мм. принимаем
b1 = 60 мм.
3. 2. Проверочный расчёт цилиндрической прямозубой передачи
Проверочный расчёт передачи проводим в соответствии с ГОСТ 21354-75.
-
Проверка передачи на контактную выносливость
.
ZH= (коэффициент, учитывающий форму сопряжённых поверхностей зубьев).
= 20 (угол зацепления).
ZH = 1,76.
ZM = (коэффициент, учитывающий механические свойства материалов сопряжённых колёс, МПа
).
(приведенный модуль упругости).
E1 = E2 =2,1·105 МПа.
Eпр= 2,1·105 МПа.
= 0,3 (коэффициент Пуассона).
ZM = 271,1 МПа
.
Z = (коэффициент, учитывающий суммарную длину контактных линий).
(коэффициент торцевого перекрытия).
a = 1,7.
Z = 0,9.
(окружная сила).
Ft = =1300 Н.
KH = KH·KHV (коэффициент нагрузки).
KH – коэффициент концентрации нагрузки.
K – коэффициент начальной концентрации нагрузки, выбирается в зависимости от
.
K
= 1,26.
При непостоянной нагрузке KH = (1-х)∙ K + х
х = 10-4∙2,2+0,4∙1+0,4∙0,6+0,2∙0,3=0,7
KH = (1-0,7) ∙1,26+0,7= 1,08.
Определяем KHV (коэффициент динамичности) в зависимости от V (окружной скорости).
V = 2,8 м/с.
Принимаем 8-ю степень точности по рекомендации [2, с. 259] (тихоходные передачи машин низкой точности). Находим
KHV = 1,22.
KH = 1,08·1,22 = 1,3.
H = 318 МПа.
H = 706,8 < [H]min = 828,3 МПа.
Недогрузка передачи составляет
H = 39% >[H]=(12…15)%, что указывает на возможность уменьшения габаритов передачи. Уменьшить межосевое расстояние нельзя по конструктивным соображениям. Изменим ширину зубчатых колес. Принимаем ba=0,25. Тогда b2 =40 мм, b1 =50, K
=1,14, KH = (1-0,7)1,14+0,7=1,042
KH = 1,042·1,22 = 1,27.
H = 370 МПа.
H = 28% >[H]=(12…15)%
Однако дальнейшее уменьшение ширины колес может привести к возрастанию виброактивности колес. В связи с этим дальнейшее изменение размеров передачи нецелесообразно несмотря на ее значительную недогрузку.
-
Проверка передачи на изгибную выносливость
(условие работоспособности на изгиб для прямозубых колёс).
С достаточной степенью точности можно считать, что KF = KH, а KFV = KHV.
YF (коэффициент формы зуба) находим в зависимости от числа зубьев рассчитываемого колеса z и коэффициента смещения режущего инструмента x (x1 = x2 = 0)
YF1 = 4,07; YF2 = 3,61.
На изгибную выносливость проверяются зубья того колеса, для которого отношение минимально.
Следовательно, на изгибную прочность проверяем зубья колеса.
F2 = 26 МПа.
F2 = 26 МПа < [F]1 = 260 МПа.
Проверяем передачу на прочность зубьев при пиковых (кратковременных) перегрузках.
.
H =370 МПа, ,
=1540 МПа
H max = 550 МПа < [H]max = 1540 МПа.
Следовательно, контактная пластическая деформация зубьев (бринеллирование) будет отсутствовать.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.