125102 (690276), страница 4
Текст из файла (страница 4)
h’ = h1 * h2, где
h1 и h2 - коэффициенты полезного действия
h’ = h1 * h2 = 0,96 * 0,97 -- 0,98 * 0,99 = 0,93 – 0,97.
Принимаем среднее значение: h’ = 0,95.
hпл = 1/ U4н [1- h’(1- U4н )] = 1/3,2 [ 1 – 0,95 (1 – 3,2) ] = 0,965.
9.3 Общий КПД
h0 = hп * hпл
где hп – КПД зубчатой передачи колес Z1 и Z2, принимаем: hп = 0,97; h0 = 0,97 * 0,965 = 0,936.
На приводной вал рабочей машины передается от двигателя мощность:
Nм = h0 * Nд = 0,929 * 15,6 = 14,49.
10. Приведенный момент инерции.
10.1 Результирующий приведенный момент инерции звеньев двигателя
J3 = J31 + J3II
10.2 Определим величину приведенного момента инерции звеньев
Jз1 = Jко + Jш(wш/w )2 + mш(Vsш/w)2 + mп(Vв/w)2, где
Jкр – момент инерции кривошипа относительно оси кривошипа;
Jш – момент инерции шатуна;
Jк – момент инерции кривошипа;
lк – расстояние от центра масс кривошипа до оси его вала.
Jко = Jк + mk * ek2 = 0,00515 + 10,5 * 0,0252 = 0,0117 кг * м2.
J3I = 0,0117 + 0,0294 (wш/177,9 )2 + 4,7(Vsш/177,9)2 + 2,5(Vв/177,9)2.
10.3 Пользуясь этой формулой, составляем таблицу 6 для подсчета значений J3I, J3II , J3 для положений 12
Номер II положения первого механизма всегда будет соответствовать номеру i положение коленчатого вала, а второй механизм: iII = iI + 6, J3II(i) = J3I (I + 6)
10.4 Составляем таблицу 6 и строим диаграмму
J3 = ò7 (j)
11.Приведённые моменты сил и мощность двигателя
11.1.1. Силу Fв проводим в точку С.
11.1.2. Величина приведённой в точку С движущей силы для одного (первого) механизма Fc.
Fс Vс = Fв Vв , откуда
Fс = Fв Vв/Vс ;где
Fв –сила давлений газов на поршень первого механизма.
Vв – скорость поршня.
Vс – линейная скорость точки С. Vс = wr = 12,45 м/с.
11.1.3. Определение искомых величин и заполнение граф таблицы производится в следующем порядке.
Графа 3 - Fв из таблицы 2,
Графа 4 - Vв из таблицы 1,
Графа 5 - Fс = Fв Vв/Vс ,
Графа 6 - Тдi = Fс * r = Fс * 0,7.
Графа 7 - Тд II (i) = ТдI (i-6) ,
Графа 8 - Тд = ТдI + Тд II . По данным графы 8 строим диаграмму изменения результирующего приведённого момента движущих сил в функции угла j поворота кривошипа.
11.2 Момент сил сопротивления
11.2.1. Тс = Асц/2pк = 1101,49/2 * 3,14 * 2 = 87,69 нм.;
где К – число оборотов кривошипного вала за цикл, в нашем примере К = 2.
Асц – работа момент сил сопротивления за цикл.
Асц = Адц =
Тд dj
11.2.2. Адц – работа момента движущих сил за цикл.
Величину работы Ад определяем приближённо по формуле:
Ад = S D Ад = SТдср. D j, где
D j - угол поворота кривошипа при передвижении из положения (i-1) в положении i:
11.2.3. Графа 9 - Тдср – средняя величина момента движущих сил при повороте кривошипа на элементарный угол D j.
Тдср i = ( Тд(i-1) + Тдi )/2.
Графа 10 - D Адi – элементарная работа, совершённом моментом Тд:
D Адi = Тдсрi * D j, D j = 300 = 0,523 рад.
D Адi = 0,523 * Тдсрi ,
Графа 11 - D Адi = (S D Ад)i = (S D Ад)i – 1 + D Адi ,
В последней строке таблицы получаем работу Адц , совершённую моментом Тд за весь цикл.
Адц = (S D Ад)24 = 1439 нм.
11.3 Приращение кинетической энергии момента DЕ
11.3.1. Строим диаграммы Ад = ò10 (j) и Ас = ò11 (j).
11.3.2. Элементарная работа D Ас момента при повороте кривошипа на элементарный угол Dj составит : D Ас = Тс D j = 87,69 * 0,523 = 45,86 нм.
Графа 12 – Асi – сумма элементарных работ сил сопротивления с начала цикла до момента прихода двигателя в рассматриваемое положение ni : Асi = (S D Ас)i = D Асi .
11.3.3. Приращение кинетической энергии DЕ механизма для любого его положения будет определяться разностью работ, совершённых движущими силами и силами сопротивления за время от момента начала цикла и до момента прихода двигателя в рассматриваемое положение:
DЕi = Адi - Асi .
11.4. Определение мощности двигателя и коэффициента неравномерности хода при работе без маховика.
11.4.1. Мощность двигателя определяется по средней величине момента движущих сил за один цикл:
Nд = ТДср. * w = Тс * w = 87,69 * 177,9 = 15600 вт.
Nд = 15,6 кВт.
11.4.2. Коэффициент d’ неравномерности хода двигателя при работе его без маховика определяем по приближённой формуле:
d’ = mj * mт * FБ/J3ср. * w2 , где
J3ср. = J3Б + J3М/2 = 0,025 + 0,0926/2 = 0,0588 кг * м2.
Заданный коэффициент d = 1,3 . Нужен маховик.
12.Расчёт маховика
12.1 Определение приведённого момента инерции маховика – Jмп.
12.1.1. Диаграммы энергомасс DЕ = ò (J3).
12.1.2. Диаграмма приращения кинетической энергии DЕ = ò12(j)
12.1.3. Диаграмма изменения приведенного момента J3 = ò (j)
12.1.4. Диаграмма энергомашин DЕ = ò (J3)
12.1.5. Определяем наибольшее wБ и наименьшее wм значение угловой скорости звена приведения за время цикла, учитывая заданную величину коэффициента неравномерности хода d:
d = 1/160 = 0,00625,
наибольшие: wб = wср(1 + d/2) = 177,9 (1 +0,00625/2) = 179,49 рад/с,
наименьшее: wм = wср (1- d/2) = 177,9 ( 1 – 0,00625/2) = 177,37 рад/с.
wср - средняя угловая скорость звена приведения.
wср = w = 177,9 рад/с.
12.1.6. Определяем величины углов Yб и Yн для проведения касательных к диаграмме энергомасс:
tgYБ = mJ/2me * wБ2 = 0,5309,
tgYМ = mJ/2me * wм2 = 0,524,
YБ = 27054’ ; YМ = 27023’.
12.1.7. (hM) = (qh) * tgyM, (hM) = 78,6 мм,
(hБ) = (qh) * tgyБ , (hБ) = 79,6 мм.
12.1.8. Определим из чертежа (lm) = 135 мм.
12.1.9. Приведенный момент инерции маховика Jмп определяется по формуле:
Jмп = mе(lm)/ d wер2 = 30 * 135/0,00625 * 177,92.
mе – масштаб кинетической энергии, принятый на DЕ = f12(j);
d - коэффициент неравномерности хода;
wер – средняя угловая скорость звена приведения.
12.2. Определение основных размеров маховика
12.2.1. С достаточной точностью примем: Jм = Jоб.
12.2.2. Момент инерции обода:
Jм = Jм об = (Dп4 – Dв4) brp/32,
Jм = Jоб = Dп5 (1 - a4) br p/32,
где a = Dв/Dн , обычно a = 0,312/0,52
b = В/Dн, обычно b = 0,078/0,52
r - плотность материала маховика r = 7800 кг/м3.
12.2.3. Наружный диаметр маховика:
Dн = 5Ö32 Jм/p (1 - a4) br = 0,520 м.
Внутренний диаметр маховика:
Dв = a * Dн = 0,312 м.
Ширина маховика:
В = b * Dн = 0,078 м.
Определяем окружную скорость на ободе:
Vн = wср * Dн /2 = 177,9 * 0,52/2 = 46,25 м/с.
12.2.3. Масса маховика определяется по формуле:
mн = p/4 (Dн 2 – Dв 2)Вr,
mн = 0,785 ( 0,522 – 0,3122) 0,078 * 7800 = 82,62 кг.
Вес маховика - Gм : Gм = gmн = 9,8 * 82,62 = 809,7 н.
13.Угловая скорость кривошипного вала
13.1 Угловую скорость w определяем по формуле
w = Ö 2 Е0 + w/Jп , где
Е0 – начальная кинетическая энергия механизма.
DЕ – приращение кинетической энергии.
Jп – приведённый к кривошипному валу момент инерции механизма.
Jп = Jмп + J3 ,
13.2. Е0 = ½ Jп w2 - DЕ
13.3 Определяем величину Еок для положения механизма, соответствующего точке К
Jпк = Jмп + J3к = JМП + mJ * хк = 3,56 + 0,001 * 41 = 3,601 кг * м2.
wк = wБ = 178,49 рад/с.
DЕк = mЕ yк = 3 * 100 = 306 нм.
Еот = ½ JптwБ2 - DЕк = ½ * 3,585 * 177,372 + 411 = 56803,25 нм.
13.4 Определяем величину Еот для положения механизма, соответствующего точке Т
Jпт = Jмп + J3т = Jмп + mJ * хт = 3,56 + 0,001 * 25 = 3,585 кг * м2.
wт = wм = 177,37 рад/с.
DЕт = mЕ * yт = 3 * 137 = 411 нм.
Еот = ½ Jптwн2 - DЕт = ½ * 3,585 * 177,372 + 411 = 56803,25 нм.
13.5 Ео = (Еок + Еот)/2 = 56932,4 нм.
13.6 w = Ö 2 ( Е0 + DЕ) /Jп .
Вычисления сведены в таблице 8. По данным последней графы этой таблицы строим диаграмму изменения угловой скорости w кривошипного вала в зависимости от изменения угла j0 его поворота.
Таблица 2
Величина | №№ положение | |||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
| путь | Угол поворота кривошипа, j0. | 0 | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 | 360 |
| Отрезок на че-ртеже (В0В), мм. | 0 | 12 | 44,5 | 85 | 121 | 144 | 152,0 | 144 | 121 | 85 | 44,5 | 12 | 0 | |
| Перемещение поршня (Sв),мм | 0 | 0,012 | 0,0445 | 0,085 | 0,121 | 0,144 | 0,1520 | 0,144 | 0,121 | 0,085 | 0,0445 | 0,021 | 0 | |
| скорость | Вектор (рв), мм | 0 | 45 | 74,5 | 76 | 57 | 30 | 0 | -30 | -57 | -76 | -74,5 | -45 | 0 |
| Скорость Vв, м/с | 0 | 5,418 | 8,9698 | 9,1504 | 6,8628 | 3,612 | 0 | -3,612 | -6,863 | -9,150 | -8,969 | -5,418 | 0 | |
| Вектор (св), мм | 76 | 65,5 | 39,5 | 0 | 39 | 66,5 | 76 | 66,5 | 39 | 0 | 39,5 | 65,5 | 76 | |
| Скорость Vвс, м/с | 9,1504 | 7,8862 | 4,7558 | 0 | 4,6956 | 8,0066 | 4,6956 | 0 | 4,7558 | 0 | 4,7558 | 7,886 | 9,150 | |
| Угловая скоро-сть wвс , рад/с | -30,50 | -26,29 | -15,85 | 0 | 15,652 | 26,689 | 30,501 | 26,689 | 15,652 | 0 | -15,85 | -26,29 | -30,50 | |
| (сSш)= (св) LcSш/Lcв= | 22,8 | 19,65 | 11,85 | 0 | 11,7 | 19,95 | 22,8 | 19,95 | 11,7 | 0 | 11,85 | 19,65 | 22,8 | |
| Вектор ( рSш ), мм | 53 | 61 | 73 | 76 | 68,5 | 58 | 53 | 58 | 68,5 | 76 | 73 | 61 | 53 | |
| Скорость VSШ, м/с | 6,3812 | 7,3444 | 8,7892 | 9,1504 | 6,8628 | 6,9832 | 6,3812 | 6,9832 | 6,8628 | 9,150 | 8,7892 | 7,344 | 6,381 | |
| ускорение | V2вс, м/с2 | 83,73 | 62,192 | 22,618 | 0 | 22,049 | 64,106 | 83,73 | 64,106 | 22,049 | 0 | 22,618 | 62,19 | 83,73 |
| авсn = Vвс2/Lсв = = Vвс2/ | 279,10 | 207,31 | 75,392 | 0 | 73,496 | 213,69 | 279,10 | 213,69 | 73,50 | 0 | 75,40 | 207,3 | 279,1 | |
| Вектор (cn), мм | 19,254 | 14,301 | 5,201 | 0 | 5,070 | 14,741 | 19,254 | 14,741 | 5,070 | 0 | 5,201 | 14,30 | 19,25 | |
| Вектор (pв), мм | 95 | 76 | 28 | -21 | -48 | -56 | -57 | -56 | -48 | -21 | 28 | 76 | 95 | |
| Ускорение ав, м/с | 1377,1 | 1101,7 | 405,89 | -304,4 | -695,81 | -811,78 | -826,8 | -811,8 | -685,8 | -304,4 | 405,89 | 1101,7 | 1377,1 | |
| Вектор (nв), мм | 19 | 39 | 66 | 78,5 | 66 | 39 | 19 | 39 | 66 | 78,5 | 66 | 39 | 19 | |
| Ускорение авсt м/c2 = | 275,42 | 565,34 | 956,74 | 1137,9 | 956,74 | 565,34 | 275,42 | 565,34 | 956,74 | 1137,9 | 956,74 | 565,3 | 275,4 | |
| Угловое ускорение Евс | 0 | 1739,5 | 3213,3 | 3993,1 | 3213,3 | 1739,5 | 0 | 1739,5 | 3213,3 | 3993,1 | 3213,3 | 1739,5 | 0 | |
| (сSш) = | 5,7 | 11,7 | 19,8 | 23,55 | 19,8 | 11,7 | 5,7 | 11,7 | 19,8 | 23,55 | 19,8 | 11,7 | 5,7 | |
| Ускорение аsш м/с2 = | 82,627 | 169,60 | 287,02 | 341,38 | 287,02 | 169,60 | 82,63 | 169,60 | 287,02 | 341,4 | 287,02 | 169,6 | 82,63 | |
| Вектор (pSш) , мм | 81 | 73 | 57,5 | 54 | 57,5 | 73 | 81 | 73 | 57,5 | 54 | 57,5 | 73 | 81 | |
| Ускорение аsш ,м/с2 | 1174,2 | 1058,2 | 833,52 | 782,79 | 833,52 | 1058,2 | 1174,2 | 1058,2 | 833,52 | 782,8 | 833,5 | 1058,2 | 1174,2 | |















