125050 (690255), страница 2
Текст из файла (страница 2)
Для компенсации возросших тепловых нагрузок и улучшения технико-экономических показателей электрических станций необходимо использование мощных конденсационных энергоблоков, для чего модернизируются конденсационные турбоустановки с организацией теплофикационного отбора пара. Осуществлена такая реконструкция турбоагрегата К-200-130-3. При увеличении расхода пара до максимума мощность турбин 300-500 МВт возрастает на 6-7%, а турбин 800 МВт - приблизительно на 4%.
Применение метода отключения ПВД в паротурбинных энергоблоках дает возможность при небольших капиталовложениях использовать значительные мощности в качестве аварийного резерва, необходимого для компенсации экстренного дефицита мощности. Наивысший экономический эффект может быть получен при комбинированной выработке пиковой мощности паросиловыми энергоблоками и ГТУ. Отключение ПВД связаны с усложнением конструкции установки и необходимостью дополнительной защиты подогревателя от повышения давления при наборах нагрузки, установкой блока-аккумулятора большой емкости, так как паровые котлы ТЭЦ не рассчитаны на работу с пониженной температурой питательной воды при сохранении номинальной производительности
В описаны возможности расширение регулировочного диапазона нагрузок. Удельную выработку электроэнергии теплофикационной турбоустановкой на тепловом потреблении можно снизить следующими способами:
- снижением температуры отвода тепла от цикла. Это достигается увеличением давления в регулируемом отборе до максимально допустимого путем обвода бойлеров по сетевой воде. Такой способ называют способом скользящего противодавления;
- уменьшением температуры подвода тепла к циклу, т.е. температуры свежего пара и пара после промперегрева.
Это приводит к значительному изменению температуры проточной части турбины, поэтому скорость изменения температуры пара должна быть выбрана таким образом, чтобы относительный сдвиг ротора не превысил аварийных значений. Следует отметить, что снижение температуры свежего пара и пара после промежуточного перегревателя способствует увеличению влажности в последних ступенях турбины, в результате чего происходят уменьшение внутреннего относительного КПД этих ступеней и дополнительное снижение электрической мощности при постоянном отпуске тепла из отборов. Однако для обеспечения надежной работы турбины влажность пара в ее последних ступенях не должна превышать предельно допустимых значений. В промежуточном отсеке (здесь она достигает максимальных значений) этот показатель в значительной мере зависит от давления в нижнем сетевом подогревателе, поэтому данный способ целесообразно использовать со скользящим противодавлением.
Следует отметить, что отключение ПВД и уменьшение температуры свежего пара на турбоустановке ТЭЦ, работающей с полной загрузкой отопительных отборов, не влекут за собой, в отличие от конденсационной электри-ческой станции (КЭС), снижения ее экономичности, так как в этом случае потери тепла в холодном источнике постоянны (при условии постоянства начальных значений давления и температуры и конечного давления). При использовании скользящего противодавления происходит увеличение давления в нижнем отопительном отборе, что приводит к повышению расхода пара в конденсатор и соответственно к снижению экономичности. Сказанное относится к турбоустановке, работающей в режиме двухступенчатого подогрева сетевой воды. При использовании трехступенчатого подогрева сетевой воды потери в конденсаторе отсутствуют, и применение описанных способов не вызывает снижения экономичности их работы.
Способ скользящего давления пара в регулируемых отборах теплофикационных турбин, позволяет изменять электрическую мощность теплофикационных турбин, работающих по тепловому графику с заданным отпуском теплоты. Это изменение получают обводом сетевых подогревателей по воде, что приводит к изменению давления пара в сетевых подогревателях и регулируемых отборах турбины. Изменение давления пара вызывает изменение используемого теплоперепада и развиваемой турбиной электрической мощности. Сохранение примерно постоянного расхода пара в сетевых подогревателях позволяет обеспечить заданную тепловую нагрузку. Исследованиями ЛИИ установлено, что с помощью этого способа электрическая мощность ТЭЦ, работающих по тепловому графику с заданным отпуском теплоты, может быть снижена на 20-25%. Рассматриваемый способ также имеет ряд недостатков. Основным из них является практическая невозможность его использования в период зимнего максимума нагрузки, когда давление пара в регулируемых отборах близко к максимально допустимому. Использование для регулирования расхода сетевой воды серийных задвижек больших диаметров, установленных на обводе сетевых подогревателей, в ряде случаев вызывает значительные трудности. Способ может быть реализован только на турбинах с регулируемыми отопительными отборами пара.
Совместное применение способов отключения ПВД и скользящего противодавления обеспечивает в течение всего отопительного сезона гарантированное снижение электрической мощности турбоустановки Т-100-130 примерно на 20 МВт. Более глубокая разгрузка турбоагрегатов ТЭЦ может быть осуществлена путем снижения расхода острого пара, что повлечет за собой уменьшение отпуска тепла отопительными отборами, которое необходимо компенсировать из других источников тепла.
Обобщая результаты о применении скользящего давления на ТЭЦ с поперечными связями, можно констатировать следующее.
По турбоустановке:
- исследования подтвердили наличие значительного дросселирования давления пара на клапанах при больших нагрузках и перекрытии клапанов;
- при малых нагрузках;
- экономичность работы турбоустановки в пределах точности измерений при постоянном и скользящем регулировании примерно одинакова, хотя в большинстве случаев эффективность при постоянном давлении несколько выше;
- по значению КПД регулирующей ступени и эффективности работы турбоустановки в целом оптимальной является комбинированное регулирование давления пара, а именно: разгрузка на постоянном давлении до закрытия третьего клапана и дальнейшая разгрузка на полностью открытых первом и втором клапанах.
По блоку котел - турбина:
- для повышения эффективности работы блока возможно повышение температуры свежего пара без снижения надежности работы поверхностей нагрева котла и паропроводов свежего пара, что позволяет значительно улучшить экономические показатели установки;
- при отсутствии возможности регулирования мощности электродвигателей питательных насосов рекомендуется при переводе электростанции в целом или отдельных ее секций в режим скользящего давления регулирование мощности производить имеющимися работающими насосами.
1 ФИЛЬТР СКОЛЬЗЯЩЕГО СРЕДНЕГО
В аналоговом варианте фильтра реализуют вычисление среднего значения функции g(t) на интервале времени от t – до t (рис. 1)
Рисунок 1 Фильтр скользящего среднего. Схема фильтрации
, (1)
где – параметр настройки фильтра (время усреднения)
Правую часть выражения (1) преобразуем к виду
. (2)
По формуле (2) видно, что фильтр скользящего среднего представляет собой параллельное соединение двух интегрирующих звеньев, одно из которых последовательно соединено со звеном запаздывания
Рисунок 2. Структурная схема фильтра скользящего среднего
Поэтому амплитудно-фазовая характеристика фильтра описывается выражением
, (3)
которое может быть преобразовано к виду
(4)
Решая совместно, можно получить выражение для дисперсии погрешности фильтра скользящего среднего и определить оптимальное значение
параметра настройки из необходимого условия минимума функции
(
). Получаемое при этом выражение очень громоздко и неудобно для практического использования. (На его основе рассчитаны номограммы, по которым для заданных значений , m и k можно определить
).
При программной реализации фильтра скользящего среднего расчет сглаженного значения в очередном i-том цикле проводится по формуле
(5)
где — параметр настройки фильтра.
Для расчета по формуле (5) требуется хранить в памяти УВМ (N + l) значение функции .
Следует заметить, что в данном методе увеличение циклов сглаживания в подавляющем большинстве случаев ведет к уменьшению погрешности, однако, это всегда ведет к потере крайних точек – чем больше циклов, тем больше точек мы теряем.
Пример расчета указан в таблице 1
Таблица 1
Пример расчета методом скользящего среднего
Исходные данные | 6,00 | 8,00 | 3,00 | 9,00 | 5,00 | 11,00 | 5,00 | 12,00 | 15,00 | 7,00 |
1-ый цикл | 5,67 | 6,67 | 5,67 | 8,33 | 7,00 | 9,33 | 10,67 | 11,33 | ||
2-ой цикл | 6,00 | 6,89 | 7,00 | 8,22 | 9,00 | 10,44 | ||||
3-й цикл | 6,63 | 7,37 | 8,07 | 9,22 |
Практическая реализация данного метода изложена в приложении 1.
Полученный результат представлен на рисунке 3.
2 ЭКСПОНЕНЦИАЛЬНЫЙ ФИЛЬТР
В аналоговом варианте экспоненциальный фильтр представляет собой апериодическое звено и описывается дифференциальным уравнением
, (6)
где и
– параметры настройки фильтра.
Уравнению (6) соответствует амплитудно-фазовая характеристика (АФХ)
, (7)
где – постоянная времени фильтра.