124794 (690153), страница 3
Текст из файла (страница 3)
Данные изотермы построены для температур Тнир, ТАС1, ТАС3, ТМн (перечислены в порядке возрастания эксцентриситета вдоль оси ОХ).
3.5 Расчёт распределения температур в поперечном сечении шва
Проводим расчёт распределения температур в поперечном сечении шва, т. е. вдоль оси Y, на поверхности металла при х={1; 2; 3; 4} см. Расчёт ведем по формуле, выведенной в разделе 4.3. Графики представлены ниже.
Термический цикл точек сварного соединения.
Термический цикл строим для
. По формуле для ширины зоны с температурой выше заданной,
см. Для построения графика используем формулу
.
График представлен ниже.
3.6 Определение протяжённости отдельных участков в ЗТВ
Величина ЗТВ зависит от способа сварки, её режима, химического состава свариваемого и присадочного металла, физических свойств свариваемых металлов, и т. д. Увеличение сварочного тока, снижение скорости сварки увеличивают ширину ЗТВ.
Протяжённость отдельных участков ЗТВ для стали 30ХМА определим из строения ЗТВ для данного сварного соединения. Температурные интервалы участков:
-
участок неполного расплавления:
, -
участок перегрева:
, -
участок нормализации:
, -
участок неполной перекристаллизации:
, -
участок рекристаллизации:
-
участок синеломкости:
.
3.7 Распределение максимальных температур в поперечном сечении шва
Для определения протяжённости отдельных участков ЗТВ необходимо построить график распределения максимальных температур в поперечном сечении шва.
Для построения этого графика используем формулу
(7.12 [1]).
График распределения максимальных температур в поперечном сечении шва показан ниже.
Ширины зон с температурами, превышающими характерные температуры, приведены ниже:
| ширина участка | |||
| Тпл | 1536 | 0,57 | см |
| Тпере | 1500 | 0,58 | см |
| Тпере2 | 1100 | 0,61 | см |
| Тнорм | 905 | 0,78 | см |
| Тнпкр | 727 | 0,80 | см |
| Трекр | 450 | 0,94 | см |
| Тсине | 200 | 0,96 | см |
Откуда можно видеть, что ширины соответствующих зон составляют:
| ширина зоны | в см |
| Неполного расплавления | 0,01 |
| Перегрева | 0,03 |
| Нормализации | 0,17 |
| Неполной перекристаллизации | 0,02 |
| Рекристаллизации | 0,14 |
| Синеломкости | 0,02 |
4. Анализ процесса формирования первичной структуры сварного соединения
Кристаллизация расплавленного металла состоит из двух элементарных параллельно протекающих процессов: зарождения зародышей, или центров кристаллизации, и роста этих центров кристаллизации.
В зависимости от способов образования зародышей различают гомогенную и гетерогенную кристаллизацию. В чистом от примесей металле при охлаждении зародыши образуются из наиболее крупных фазовых флуктуаций жидкой фазы, выделение которых связано с флуктуациями энергии (гомогенное зарождение). В технических металлах всегда имеются дисперсные включения примесей, на поверхности которых и происходит образование центров кристаллизации (гетерогенное зарождение).
В результате воздействия сварочного источника тепловой энергии основной металл начинает плавиться, а металл, ограниченный изотермой Т=Тпл, образует сварочную ванну. Сварочная ванна перемещается по свариваемому изделию вместе с источником тепловой энергии. После затвердевания расплавленного металла сварочной ванны образуется шов.
На кристаллизацию расплавленного металла сварочной ванны оказывают влияние следующие условия:
- наличие в ванне центров кристаллизации в виде зёрен основного металла на границе раздела твёрдого и жидкого металла;
- происходящий параллельно кристаллизации ввод в сварочную ванну движущимся источником тепловой энергии, скорость движения которого определяет скорость перемещения фронта кристаллизации;
- малый объём и небольшое время существования сварочной ванны, большие средние скорости роста кристаллов;
- значительный градиент температур в ванне, перегрев металла в центре шва;
- интенсивное перемешивание металла ванны;
- воздействие на кристаллизующийся металл термодеформационного цикла сварки.
В процессе кристаллизации металла шва формируется его первичная структура1, определяемая формой, размерами, взаимным расположением кристаллитов, размером дендридных образований и фазовых выделений. Форма межфазной поверхности фронта кристаллизации может быть плоской (при стыковой сварке стержней), цилиндрической (сварка пластин встык с полным проплавлением), пространственной (сварка массивного изделия).
При затвердевании расплавленного металла сварочной ванны преобладает гетерогенный процесс кристаллизации, и только в центре шва возможна гомогенная кристаллизация.
Под влиянием конкретных тепловых и кинетических условий кристаллизации металла шва, химического состава сплава, градиента температуры, скоростей сварки и кристаллизации в различных зонах шва, возможно образование разных первичных структур – столбчатой, полиэдрической. Эти структуры могут быть ячеистыми, ячеисто-дендридными, дендридными.
Скорость кристаллизации Vкр и градиент температур в жидкой фазе grad(T) оказывающий наиболее существенное влияние на образующуюся структуру, можно рационально подбирать и изменять при сварке. Температурный градиент в жидкости может быть повышен увеличением тепловой мощности дуги путём изменения режима сварки в сторону увеличения тока и напряжения, либо понижен при предварительном подогреве.
Первичная структура шва оказывает большое влияние на многие свойства наплавленного металла, особенно если в недалёком будущем его не подвергать термообработке, прокатке или ковке. Поэтому важно, чтобы первичная структура была зернистой и, по возможности, равноосной. Тогда свойства металла будут достаточно высокими и без термообработки.
Пути регулирования процессов первичной кристаллизации:
- для уменьшения химической неоднородности и повышения стойкости металла к образованию горячих трещин, необходим подбор оптимального соотношения между шириной В и глубиной Н сварочной ванны.
- чтобы получить металл высокой прочности и пластичности, стойкий к возникновению кристаллизационных трещин, необходимо измельчать его структуру, что можно, в частности, достигнуть введением в сварочную ванну элементов-модификаторов (бор, титан, ванадий, ниобий, цинк и т.д.), либо искусственным повышением скорости кристаллизации.
- введение в сварочную ванну элементов, способствующих образованию избыточных фаз типа твёрдого раствора, первичных карбидов, что имеет особое значение при сварке легированных сталей и цветных металлов.
- воздействием на ванну ультразвуком, механическими вибрациями, электромагнитным полем.
5. Анализ процессов в ЗТВ
В процессе сварки происходит изменение структуры и свойств участков основного металла, прилегающих к шву.
Зона термического влияния (ЗТВ) – участок основного металла, примыкающий к сварному шву, структура и свойства которого вследствие теплового воздействия сварочного источника тепловой энергии изменяются.
ЗТВ имеет несколько структурных участков, отличающихся формой и строением зерна, в зависимости от температуры нагрева.
Участок неполного расплавления – переходный от наплавленного металла к основному. На этом участке образуется соединение и проходит граница сплавления. Он представляет собой очень узкую область основного металла, нагретого ниже линии ликвидуса, но выше линии солидуса. В этой зоне наблюдается значительный рост зёрен и скопления примесей, поэтому этот участок обычно является слабым местом сварного соединения, обладая пониженной прочностью и пластичностью.
Участок перегрева – область основного металла, нагреваемого до температурного диапазона 1100..1500°С. Металл этого участка претерпевает аллотропическое превращение Feα→Feγ. Металл этой зоны отличается крупнозернистой структурой и пониженными механическими свойствами.
Участок нормализации – область металла, нагреваемая до температур 905-1100°С. Металл этого участка обладает высокими механическими свойствами, ввиду мелкозернистой структуры.
Участок неполной перекристаллизации – зона, металл которой нагревается до 727–905°С. Неполная перекристаллизация этого участка обусловлена недостатком времени и низкой температурой нагрева. Структура состоит из мелких перекристаллизовавшихся и крупных зёрен. По сравнению с участком нормализации, механические свойства несколько понижены.
Участок рекристаллизации – область металла, нагреваемого до температур 380–727°С. Рекристаллизация – изменение структуры деформированного металла при его нагреве выше определённой температуры. При этом искажённая кристаллическая структура переходит в ненапряжённую.
Участок старения (синеломкости) – нагреваемый до 200–380°С металл – переходный между ЗТВ и основным металлом. Спустя некоторое время могут происходить процессы старения в связи с выпадением карбидов и нитридов железа. Заметных структурных превращений нет.
6. Оценка технологической прочности сварного соединения
6.1 Горячие трещины сварного соединения
Горячими трещинами называются хрупкие межкристаллитные разрушения в шве или ЗТВ, возникающие в области температурного интервала хрупкости в результате воздействия термодеформационного сварочного цикла. Горячие трещины чаще всего возникают в сплавах, обладающих выраженным крупнокристаллитным строением, с повышенным содержанием локальных концентраций легкоплавких фаз. Согласно общепринятым представлениям, они возникают в том случае, если интенсивность нарастания деформаций в металле сварного соединения в период остывания приводит деформациям большим, чем его пластичность в данных температурных условиях.
Образование горячих трещин определяется тремя основными факторами: пластичностью металла в ТИХ, значением этого интервала и характером нарастания деформаций при охлаждении.
Для уменьшения склонности сварных соединений к образованию горячих трещин необходимо в процессе производства стремиться к такому набору свойств свариваемого сплава в ТИХ, а также технологических приёмов и конструктивному оформлению узлов, которые бы обеспечили наименьшие деформации. Для этого необходимо стремиться к уменьшению ТИХ и снижению темпов роста деформаций.
Все известные способы повышения технологической прочности в конечном итоге сводятся к следующим:
-
Изменение химического состава
-
Выбор оптимального режима сварки
-
Применение рационального типа конструкции и порядка наложения сварных швов.
Из методов количественной оценки технологической прочности широкое распространение получил метод, изобретённый в МВТУ им. М.Э. Баумана. Сущность его состоит в следующем: испытуемый шов деформируется в ТИХ с заданным темпом нарастания деформаций, вплоть до полного исчерпания пластичности. Показателем сопротивляемости образованию горячих трещин служит максимальная скорость деформации, при которой трещины ещё не образуются.
.
Для стали 30ХМА найдем
Если HСS < 4, то горячие трещины в сварном соединении не образуются. Для стали 30ХМА характерно образование горячих трещин.
6.2 Холодные трещины сварного соединения
Холодные трещины – локальное хрупкое межкристаллическое разрушение металла сварных соединений – частый дефект при соединении углеродистых и легированных сталей, претерпевающих при сварке частичную или полную закалку. Они могут возникать во всех зонах сварного соединения и располагаются параллельно или перпендикулярно оси шва. Холодные трещины образуются после окончания сварки, ниже температуры 420–370 ºС, в течение последующих суток. Излом холодных трещин светлый, без заметных следов окисления.
,
,
,
,
.














