124718 (690129), страница 3
Текст из файла (страница 3)
Перегородки из природных камней. Фильтровальные перегородки в виде плиток, вырезанных или выпиленных из некоторых сортов песчаника, использовались раньше в нутчах. Вследствие того, что такие перегородки отличаются недостаточно равномерным распределением пор, в настоящее время они заменены керамическими перегородками.
Нежесткие перегородки. Эти перегородки состоят из соприкасающихся, жестко не связанных твердых частиц каменного, древесного и животного углей, кокса, диатомита, отбеливающей глины, песка, а также некоторых неорганических солей. По сравнению с перегородками других типов они относительно дешевы и имеют то преимущество, что могут поддерживаться в чистом состоянии промывкой, сопровождающейся изменением взаимного расположения твердых частиц в результате перемешивания. Недостатком таких перегородок является возможность их применения только при наличии горизонтальной опорной перегородки. Проницаемость таких перегородок по отношению к жидкой фазе суспензии и способность задерживать ее твердую фазу в значительной мере определяется размером и формой составляющих перегородку частиц. В некоторых случаях действие этих перегородок основано не только на механическом задерживании твердой фазы суспензии, но и на адсорбции взвешенных и растворенных веществ на поверхности твердых частиц.
указания по выбору фильтровальных перегородок
Ввиду очень большого разнообразия типов фильтровальных перегородок, конструкций фильтров, свойств суспензий и условий их разделения выбор наиболее подходящей фильтровальной перегородки весьма сложен. Уже соблюдение упомянутого в начале этой главы основного правила выбора вызывает затруднение, поскольку увеличение или уменьшение размера пор действует в противоположном направлении на скорость фильтрования и задерживающую способность.
Указанное затруднение возрастает в связи с рядом других требований, одновременное выполнение которых нельзя достигнуть выбором одной из имеющихся фильтровальных перегородок. Поэтому выбор нередко сводится к нахождению наиболее разумного компромисса между различными, взаимно противоречивыми требованиями, предъявляемыми к фильтровальной перегородке в данных условиях разделения суспензии. Вследствие этого перед выбором необходимо предварительно решить некоторые вопросы, например: следует ли стремиться в первую очередь к повышению скорости фильтрования пли улучшению чистоты фильтрата, а также является ли более существенной стоимость фильтровальной перегородки или продолжительность ее службы. В некоторых случаях относительно дорогая фильтровальная перегородка, например ткань из определенного синтетического материала, оказывается единственно подходящей в данных условиях разделения суспензии, что практически исключает экономические соображения при выборе.
Таким образом, выбор можно сделать только при учете всех требований, предъявляемых к фильтровальной перегородке; невозможно переходить от требования к требованию, логически устраняя перегородки до тех пор, пока после рассмотрения последнего требования не останется одна идеальная перегородка [354].
Нельзя себе представить некоторый общий порядок выбора фильтровальных перегородок, пригодный без изменения по крайней мере для большинства встречающихся на практике случаев. В каждом индивидуальном случае при выборе надлежит руководствоваться специфическими соображениями, определяемыми особенностями данного процесса разделения суспензии. Однако можно наметить общую схему выбора и последовательность испытаний применительно к большой группе фильтровальных перегородок одного типа, например к фильтровальным тканям.
Существует три способа испытаний фильтровальных перегородок— лабораторный, полузаводской и заводской. Лабораторный способ особенно быстр и экономичен, но получаемые при этом результаты часто ненадежны и должны поэтому рассматриваться как предварительные. Полузаводскиё испытания дают результаты, приближающиеся к заводским данным. Наиболее надежные результаты обеспечивают испытания в заводских условиях. При этом следует руководствоваться правилом, чтобы вся поверхность заводского фильтра (а не часть ее) состояла из исследуемой фильтровальной перегородки.
Различные фильтровальные перегородки, независимо от использования их в дальнейшем для разделения суспензии с определенными характеристиками, отличаются рядом свойств, из числа которых здесь кратко рассмотрены проницаемость по отношению к чистой жидкости, задерживающая способность по отношению к твердым частицам известного размера и распределение пор по размерам. Эти свойства исследуются в лаборатории, служат для сравнения фильтровальных перегородек и учитываются при их выборе.
Проницаемость по отношению к чистой жидкости, обычно воде, можно определить с помощью различных приборов [364], принцип действия которых основан на измерении объема фильтрата, полученного в течение определенного времени при соответствующей разности давлений и известной поверхности фильтрования. Проницаемость целесообразно выражать в виде гидравлического сопротивления фильтровальной перегородки. Определение гидравлического сопротивления фильтровальных перегородок путем расчета на основании данных об их структуре, как правило, затруднено ввиду недостаточной четкости характеристик такой структуры. Однако для наиболее простых по структуре фильтровальных перегородок рекомендованы соотношения, позволяющие рассчитать гидравлическое сопротивление.
Так, дана [456] зависимость гидравлического сопротивления ткани из монофиламентного волокна от диаметра нитей и пористости ткани. Исходя из модели неподвижного слоя частиц, получено [457] выражение для гидравлического сопротивления металлических тканей.
При оценке свойств и выборе ткани, а также других фильтровальных перегородок следует принимать во внимание, что гидравлическое сопротивление перегородки постепенно возрастает при увеличении числа циклов работы фильтра периодического действия или продолжительности работы фильтра непрерывного действия. При этом возрастание сопротивления происходит сначала относительно быстро, а затем замедляется. В частности, зависимость сопротивления ткани от числа циклов работы фильтра выражена [434] ранее приведенным уравнением (VIII, 406).
Задерживающая способность по отношению к твердым частицам, например сферическим частицам полистирола определенного размера, находится из опытов, в которых устанавливают содержание этих частиц в фильтруемой жидкости до фильтровальной перегородки и после нее. При этом содержание твердых частиц в пробах жидкости, взятых до фильтровальной перегородки и после нее, находят отстаиванием или дополнительным фильтрованием сквозь плотную фильтровальную бумагу.
Распределение пор по размеру, а также средний размер пор находят пузырьковым методом [352, 369, 370, 374], который в общих чертах состоит в следующем.
Исследуемая фильтровальная перегородка размещается на опорном устройстве под поверхностью жидкости, которая полностью смачивает материал перегородки. Затем под нижнюю поверхность фильтровальной перегородки подается воздух, давление которого постепенно повышается, в результате чего наступает момент, когда через перегородку начинают проходить единичные цепочки пузырьков. Это соответствует прохождению пузырьков воздуха через поры наибольшего размера. При дальнейшем повышении давления количество единичных цепочек пузырьков возрастает за счет прохождения воздуха через поры все меньшего размера. Во многих случаях достигается такое давление, когда при очень небольшом его увеличении жидкость «вскипает». Это означает, что исследуемая фильтровальная перегородка характеризуется достаточно однородными порами. Если «вскипания» не происходит, фильтровальная перегородка имеет поры, значительно различающиеся по размеру.
Размер пор, через которые проходит воздух при данном давлении, вычисляют по известным закономерностям. Для пор, поперечное сечение которых можно принять близким к треугольнику, за определяющий размер рекомендовано считать не сторону треугольника, а диаметр круга, который может быть в него вписан. Отмечено, что ошибки при нахождении размера пор пузырьковым методом в значительной мере объясняются недостаточной смачиваемостью материала фильтровальной перегородки жидкостью, выбранной для опыта.
Далее излагается примерный порядок выбора фильтровальных тканей, который отчасти можно использовать при выборе нетканых материалов.
Для ориентации при выборе одной из фильтровальных тканей применительно к осуществлению данного процесса разделения суспензии необходимо иметь сведения о назначении фильтрования (получение осадка, фильтрата или того и другого одновременно), а также по возможности полные данные о свойствах твердых частиц (размер, форма, удельный вес), жидкости (кислая, щелочная, нейтральная; температура, вязкость, удельный вес), суспензии (соотношение твердой и жидкой фаз, агрегация частиц, вязкость), осадка (удельное сопротивление, сжимаемость; кристаллический, рассыпчатый, пластичный, липкий, слизистый). Кроме того, следует иметь представление о производительности, что поможет определить движущую силу процесса (сила тяжести, вакуум, давление).
С учетом сведений, приведенных выше, выбирается подходящая по своим характеристикам ткань, устойчивая в данных химических, термических и механических условиях.
При выборе ткани с определенными механическими свойствами следует учитывать движущую силу процесса и тип фильтра, на котором будет разделяться суспензия. Конструкция фильтра может определить одну или более из следующих характеристик фильтровальной ткани: а) прочность на растяжение; б) устойчивость при изгибании; в) устойчивость к истиранию; г) способность принимать форму опорной перегородки фильтра.
Прочность на растяжение важна, например, для ленточных безъячейковых фильтров. Устойчивость при изгибании приобретает большое значение, когда рассматривается вопрос об использовании металлических сеток или синтетических монофиламентных тканей; последние значительно устойчивее. Если в фильтре ткань подвергается истиранию, то исключается применение стеклянных тканей, которые, однако, имеют хорошую прочность на растяжение.
С точки зрения способности принимать форму опорной перегородки некоторые ткани нельзя использовать, хотя в других отношениях они обладают желательными свойствами. Так, на барабанных вращающихся фильтрах ткань прижимается к барабану методом «конолатки» при помощи шнуров, которые проходят по окружности барабана. В данном случае плотные ткани, изготовленные из монофиламентных полиэтиленовых или полипропиленовых нитей, менее желательны, чем более гибкие ткани, изготовленные из полифиламентных нитей, или штапельные ткани.
При использовании некоторых фильтров предъявляются дополнительные требования к ткани. Например, для плиточно-рамных фильтрпрессов получают большое значение уплотняющие свойства ткани. Среди тканей из синтетических материалов в этом отношении наиболее пригодны штапельные ткани, за которыми следуют ткани из полифиламентных и монофиламентных нитей. В листовых фильтрах, работающих под вакуумом и давлением, фильтровальная ткань натягивается на жесткие каркасы. Поскольку размер ткани после соприкосновения с суспензией не должен изменяться, необходима предварительная усадка ткани.
При выборе типа ткани из синтетических материалов нужно учитывать, что штапельные ткани обеспечивают хорошую задерживающую способность по отношению к твердым частицам ввиду наличия на их поверхности небольших волосков. Однако осадок отделяется от этих тканей хуже, чем от тканей из полифиламентных и в особенности монофиламентных нитей.
При выборе способа переплетения нитей и размера пор ткани, что определяет ее проницаемость и задерживающую.способность, следует исходить из назначения процесса фильтрования и данных о свойствах твердых частиц, суспензии и осадка. Решение о выборе достаточно плотной или редкой ткани можно принять только после сопоставления всех особенностей рассматриваемого процесса фильтрования.
Сделанный таким образом выбор фильтровальной ткани подтверждается или корректируется на основании лабораторных испытаний с использованием, например, однолистового фильтра. Испытания на этом фильтре не дают сведений о прогрессирующем закупоривании пор и изнашивании ткани. Однако они дают указания о чистоте фильтрата, производительности и окончательной влажности осадка. Однолистовой фильтр представляет собой плоскую полую пластину, одна из сторон которой обтянута фильтровальной тканью. Этот фильтр присоединяют к источнику вакуума и погружают в суспензию (фильтрование); поддерживают в воздухе (продувка) или орошают диспергированной жидкостью (промывка). При этом ткань фильтра обращена вниз или вверх или расположена вертикально в зависимости от того, какой фильтр моделируется в данном случае.
Ниже описывается рекомендуемая [357] последовательность операций при испытании применительно к выбору ткани для десяти типов вакуум-фильтров непрерывного действия: барабанный фильтр с устройством для снятия осадка шнурами; барабанный фильтр с устройством для снятия осадка ножом; барабанный фильтр с устройством для снятия осадка валиком; барабанный фильтр со сходящей тканью; барабанный фильтр со слоем вспомогательного вещества; барабанный фильтр с внутренней поверхностью фильтрования; дисковый фильтр с устройством для снятия осадка ножом; дисковый фильтр с устройством для снятия осадка валиком; тарельчатый фильтр со шнековым устройством для снятия осадка и карусельный фильтр.
Когда цикл состоит только из операций фильтрования и продувки, после определения весовой концентрации суспензии производят пробное фильтрование в течение 60 сек и продувку в течение 120 сек. Измеряют толщину осадка и снимают его шнурами, ножом или валиком, после чего определяют вес влажного осадка и содержание в нем влаги; устанавливают чистоту фильтрата и »его вес.
Если осадок не снимается удовлетворительно ни одним из указанных способов, целесообразно увеличить продолжительность продувки или вакуум, или то и другое одновременно. Если осадок и после этого снимается плохо, следует испытать другую фильтровальную ткань. Когда осадок снимается удовлетворительно, надлежит сделать опыт при более коротком времени фильтрования и пониженном или повышенном вакууме. При этом необходимо иметь в виду, что сжимаемые осадки иногда закупоривают поры быстрее при повышенном вакууме.
После описанного пробного фильтрования принимают некоторый цикл работы фильтра, основанный на типе фильтра, который был моделирован, и свойствах разделяемой суспензии. В соответствии с принятым циклом выполняют новое фильтрование и отмечают величины, характеризующие процесс. Затем вычисляют производительность в н-м~2-ч'1, скорость фильтрования в м3-лг2 • сек~[ и влажность образовавшегося осадка. Если возможно, определяют также расход воздуха во время продувки в м*-сек~К.
Результаты первых двух или трех испытаний с новой тканью не должны приниматься во внимание, поскольку они не могут характеризовать с достаточной точностью свойства ткани. Испытания ткани необходимо продолжать до тех пор, пока четыре или пять последовательных испытаний не покажут результаты, отличающиеся один от другого на 3—5% по скорости фильтрования и влажности осадка.















