124680 (690110), страница 3
Текст из файла (страница 3)
Для ясности рисунка не все из этих устройств показаны на фиг. 1.
Определенное количество образовавшегося жидкого отстоя 24, расплав металла 24, образующийся в емкости печи 1, проходит через слив 34 в емкость для переплава 3 и там подвергается переплаву и одновременному нагреву до начала отвода. Для этой цели емкость для переплава 3 содержит по крайней мере одно, предпочтительно несколько сопел, а именно защищенных (защищенных природным газом, с возможностью применения в качестве защитных газов также Ar, CO2 и высших углеводородов) и/или незащищенных сопел (надванных сопел (для дожигания) или сопел высокого давления (подванных) и/или фурм 35 (подвижных и/или фиксированно установленных фурм, возможно, выполненных в виде комбинированных фурм/горелок) в различных точках крышки и стенок емкости для переплава над и/или под поверхностью шлака для вдувания сверху или вдувания внутрь по крайней мере одного из веществ 12', 13', 14', 27 - 30, и/или защищенных подванных сопел 36 (предпочтительно сопел высокого давления) и/или донных продувочных кирпичей для продувки или подванных сопел для вдувания внутрь по крайней мере одного из веществ 12', 13', 14', 27 - 30, а также продувочных кирпичей для инертных газов 30, и/или отверстий для добавления кусковых носителей железа 12, носителей углерода 13 и шлакообразующих веществ 14 - индивидуально или в сочетании друг с другом, при этом, в соответствии с предпочтительным вариантом конструкции емкости для переплава 3, обеспечивается следующее: через несколько фурм 35 сверху вдувается исключительно газообразный кислород 27. Фурмы 35 размещены по центру крышки 37 емкости для переплава 3 через приблизительно равные промежутки по всей длине устройства переплава; они могут смещаться в вертикальном направлении и одновременно поворачиваться в пределах угла наклона от 0 до 30o относительно вертикали в сторону течения или против течения 38 металлического расплава 24; через несколько защищенных подванных сопел 36 и/или продувочных кирпичей, расположенных между фурмами 35, подается исключительно инертный газ 30 (N2 и/или Ar в любых соотношениях). Подванные сопла 36 и/или продувочные кирпичи размещены индивидуально или парами по центру в дне и/или в боковых стенках по всей длине емкости для переплава 3. В емкость для переплава 3 исключительно через отверстие крышки 39 подаются исключительно кусковые связующие вещества для шлака 14 (известь, флюорит, кварцевый песок, боксит и т. д. ) при посредстве ленточного транспортера 40. На каждой из двух длинных сторон емкости для переплава 3 выполнено отверстие для контроля и ремонта 50. Два контрольных отверстия 50 смещены относительно друг друга в продольном направлении емкости для переплава 3.
Путем добавления кусковых шлакообразующих веществ 14 через отверстие крышки 39 на участке фурмы, которая расположена последней в направлении течения металла 24 внутри емкости для переплава 3 - приблизительно над отводным отверстием для нерафинированной стали 41 - ускоряется растворение извести и образование реакционноспособного шлака для переплава 25, так как содержание оксида железа в шлаке 25 в этой области емкости для переплава 3 постоянно поддерживается высоким при помощи находящейся рядом последней кислородной фурмы 35.
За счет собственной тяжести, а также импульса, сообщаемого фурмами 35, шлак для переплава перемещается вдоль емкости для переплава 3 против течения расплава металла 24 в направлении стрелки 42 к емкости печи 1, сообщая расплаву металла 24 непрерывное повышение температуры и повышение содержания сопутствующих элементов (C, Si, Mn, P, S и т.д.), таким образом осуществляя его нагрев и переплав и при этом претерпевая охлаждение и восстановление за его счет. При непрерывной работе, с непрерывной ванной по всей длине установки (как показано на фиг. 1), шлак 25 отводится через люк для шлака 43, расположенный на свободном торце сцеживающей емкости 2. При таком способе количество шлака 25, имеющееся в емкости печи 1 и в сцеживающей емкости 2, может дополнительно регулироваться путем частичной выгрузки шлака 25 при посредстве порога для шлака 44 через один или два боковых люка для шлака 45, расположенных в емкости для переплава - непосредственно перед входом шлака в электродуговую печь.
Преимущества такого "противотока металла/шлака" таковы:
1) низкие потери тепла и железа шлаком 25 при выходе из сцеживающей емкости 2 через люк для шлака 43, так как, с одной стороны, шлак 25 выходит из установки с "холодной стороны", а с другой стороны, в сцеживающей емкости 2 из шлака 25 выпадает так называемый "дождь" капель металла, в дополнение к восстановлению оксида железа, первоначально осуществляемому в емкости печи 1;
2) получение желаемого сорта стали при существенно более низком расходе шлакообразующих веществ 14 и более низком удельном количестве шлака 25, соответственно ("шлако-обедненное" переплав, возможное как вариант), и, следовательно, при пониженном износе огнеупорной облицовки оборудования.
В полунепрерывной работе установки, включающей периодический отвод нерафинированной стали 24 из емкости для переплава 3, переливание шлака 25 из емкости печи 1 в емкость для переплава 3 ограничивается или предотвращается при помощи боковых вставных порогов для шлака 44.
Горячие отработанные газы 19, образующиеся в емкости для переплава 3, сначала попадают в емкость печи 1, смешиваясь с отработанными газами, образующимися там, перед восхождением через шахту предварительного нагрева 5 и выходом из установки через трубопровод отработанных газов 46, расположенный в верхней части шахты предварительного нагрева 5. В зависимости от требуемых местных тепловых условий в различных частях установки, отработанные газы по пути частично дожигаются в возрастающей степени, предпочтительно кислородом 27, возможно, воздухом 28 или воздушно-кислородными смесями, через фурмы 32, 35 и/или сопла 47. При таком способе высокие степени дожигания, составляющие более 60%, технически возможны при определенных загрузочных количествах и определенных условиях управления технологическим процессом. Таким образом, при применении способа и установки по данному принципу намного большее количество химического и весьма ощутимого тепла от отработанных газов 19 передается ванне металла 24 или непосредственно внутри емкости для переплава 3 и емкости печи 1, или косвенно путем предварительного нагрева загрузочных веществ 7 в шахте предварительного нагрева 5, то есть сразу же используется в технологическом процессе.
Установка и способ по данному изобретению показывают более низкое потребление электроэнергии по сравнению с обычными электродуговыми печами, не использующими предварительный нагрев лома (25-30%) и с электродуговыми печами периодического действия со встроенным предварительным нагревом лома (10-15%), при использовании идентичных загрузочных веществ. Увеличение выходной мощности по сравнению с обычными электродуговыми печами, не использующими предварительный нагрев лома, при приблизительно одинаковых размерах и оснащении электродуговых печей (выходная мощность преобразования, фурмы, горелки и т.д.) составляет до 50%.
Работа отдельных узлов установки, таких, как емкость печи 1, шахта предварительного нагрева 5 и боковые загрузочные шахты 10, емкость для переплава 3 и сцеживающая емкость 2 осуществляется как функция используемых загрузочных веществ, в частности, носителей железа 7 (форма, размер, состав, температура и состояние агрегирования) желаемого объема производства, требований к качеству стали, желаемого режима работы установки (непрерывного или полунепрерывного - с периодическим выпуском), в том числе с учетом желаемого объединения с предшествующими или последующими установками (в частности, для производства чушкового чугуна, прямого восстановления, вторичной металлургической обработки, непрерывного литья и т.д.), типов и стоимости имеющихся источников энергии.
Главная цель описываемой концепции - осуществление отдельных этапов технологического процесса, а именно предварительного нагрева, загрузки, плавления или плавления с восстановлением, переплава, нагрева и отвода, внутри установки в одно и то же время, но с локальным смещением и поэтому независимо, насколько это возможно, в различных узлах установки при контролируемом протекании процесса в относительно благоприятных физико-химических, реакционно-кинетических условиях и условиях теплообмена, то есть таким образом, чтобы получить установку в целом, состоящую из почти совершенных (высокоэффективных) секционных реакторов для конкретного случая применения.
Конфигурация установки по изобретению дает возможность взаимно независимой разгрузки зоны установки, включающей емкость печи 1 и сцеживающую емкость 2 (через отводное отверстие 43), и емкости для переплава 3 через отводное отверстие 41, что не требует наклона всей установки. Кроме того, имеется также возможность поочередного осмотра и ремонта в горячем состоянии любой из этих двух соседних зон, без прерывания технологического процесса. В соответствии с изобретением, все части установки жестко сблокированы в виде отдельных узлов, и во время работы не могут перемещаться или наклоняться. Благодаря предпочтительной секционной конфигурации нижних емкостей и крышек 4 и 37 установки, отдельные емкости, такие как емкость для переплава 3, емкость печи 1 и/или сцеживающая емкость 2, или другие части установки, соответственно, при необходимости ремонта могут быть заменены путем выдвижения вбок (это также относится к шахте предварительного нагрева 5 и загрузочным шахтам 10).
В соответствии с изобретением, конфигурация установки, представленная на фиг. 1, является предпочтительной при непрерывном функционировании с непрерывной ванной, размещающейся по всей длине установки. Такая непрерывная ванна может регулироваться при высоком содержании углеродистых носителей железа в загрузке (в частности, при загрузке 30% стального лома + 30% губчатого железа + 40% жидкого чушкового чугуна). Однако возможно также и использование различных уровней ванны металла в емкости печи и в емкости для переплава.
Некоторые конфигурации установки, предпочтительные по изобретению с точки зрения переменных загрузочных соотношений, представлены на фиг. 4 - 6, где конфигурация установки по фиг. 4 - как альтернатива фиг. 1 - обеспечивает непрерывное функционирование с непрерывной ванной при содержании жидкого чушкового чугуна в загрузке минимум 30%; конфигурация установки по фиг. 5 предназначена для непрерывного или полунепрерывного функционирования при содержании жидкого чушкового чугуна в загрузке максимум 30%; при полунепрерывном функционировании емкость для переплава разгружается партиями; при содержании жидкого чушкового чугуна в загрузке <15% и в отсутствие прямой подачи твердых носителей углерода 13, 13' в емкость для переплава 3 установка может содержать (необязательно) обогреваемую емкость, в частности ковшовую печь 29, после емкости для переплава 3; конфигурация установки по фиг. 5 предназначена для граничного случая непрерывного процесса плавления без загрузки жидкого чушкового чугуна 20: обогреваемая емкость, в частности, ковшовая печь 49, выполняет функцию емкости для переплава 3, так как исключается основная часть работы по переплаву.
Как очевидно из фиг. 4 - 6, на форму и размер емкости для переплава 3 и сцеживающей емкости 2, в первую очередь, но также и на размер шахты предварительного нагрева 5, количество, размер, расположение и применение боковых загрузочных шахт 10, а кроме того, на выходную мощность преобразования, требуемую для электродуговой печи, влияют соотношения загрузочных веществ. При повышении содержания углерода в загружаемых носителях железа 7 и увеличении их жидкой составляющей емкость для переплава 3 и сцеживающая емкость 2, в принципе, становятся более узкими и длинными (как труба), а удельная выходная мощность преобразования электродуговой печи снижается, и наоборот. В граничном случае 100 %-ной загрузки твердых веществ сцеживающая емкость при проектировании может быть сильно укорочена.
Примерный вариант осуществления изобретения
Загрузка состоит из 40% жидкого чушкового чугуна 20, 30% смешанного лома 7 и 30% гранул губчатого железа 12. Химический состав этих загрузочных веществ приведен в табл. 1.
Установка служит для осуществления технологического процесса, который, в соответствии с фиг. 1, для обеспечения производительности около 150 т/ч нерафинированной стали, имеет следующие характеристики:
а) емкость печи 1: диаметр около 6 м, выходная мощность преобразования 55 МВА, 4 комплекта графитовых электродов 16 (диаметр 350 мм, возможность поворота в вертикальной плоскости в пределах угла наклона 0 - 30o), один донный анод 17, один желоб 21 для непрерывно подаваемого жидкого чушкового чугуна 20, один люк для осмотра и ремонта 22, 1 комплект манипулятора для фурм 23 (через люк 22), 4 комплекта кислородных фурм 32 из расходующихся трубок, входящих через боковые стенки емкости печи 1 (диаметр фурмы 1 дюйм, давление всасывания кислорода на входе ≥ 5 бар), 4 комплекта донных продувочных кирпичей 33 для инертного газа 30 (смесь N2/Ar, регулируемая в любых желаемых количественных соотношениях), с максимальной скоростью потока газа около 200 Нл/мин на продувочный кирпич 33 (максимальная скорость потока инертного газа в емкости печи 1 около 800 Нл/мин), наклон дна по направлению к запасному отводному отверстию 48 в сцеживающей емкости 2 около 5-6o;
б) шахта предварительного нагрева 5 для предварительного нагрева и последующей загрузки смешанного лома 7 в емкость печи 1, постоянное восьмиугольное поперечное сечение шахты (около 2,5 м внутренняя ширина), высота шахты около 4 м, общий объем около 25 м3, из них 17,5 м3 - рабочий объем (вместимость около 12 т смешанного лома 7), включая ленточную загрузку 8, газопроницаемые водоохлаждаемые изолирующие устройства 6 (устройство задержки подачи лома) и трубопровод отработанных газов 46, но без сопел дожигания 47;
в) 3 комплекта боковых загрузочных шахт 10 для гранул губчатого железа 12 и кусковой извести 14 (при отсутствии загрузочных шахт 10 у сцеживающей емкости 2 и у отверстия 9 для загрузки шахты предварительного нагрева смешанным ломом 7), прямоугольное поперечное сечение 1200 х 600 мм, высота 3,5 м, рабочий объем загрузочной шахты 10 около 2,2 м3 (вместимость трех загрузочных шахт 10 - около 12 т гранул губчатого железа 12), водоохлаждаемые и газонепроницаемые изолирующие устройства 11 у входа в емкость печи 1, загрузка трех загрузочных шахт 10 посредством общего ленточного транспортера 15 и распределительного желоба (распределительный желоб не показан на фиг. 1);
г) емкость для переплава 3: ширина около 1,9 м, длина около 6,0 м, наклон дна в направлении отводного отверстия для нерафинированной стали 41 - около 8-9o (средняя площадь углового поперечного сечения емкости для переплава 3 по кирпичной облицовке - около 3 м2), 4 комплекта водоохлаждаемых кислородных фурм 35 (каждая с одним отверстием в головке, диаметр форсунки около 1 дюйма, давление кислорода у входа около 10 бар), расположенных по центру крышки 37 емкости для переплава 3 на расстояниях друг от друга около 1,5 м и на расстояниях около 0,75 м от коротких сторон емкости для переплава, с возможностью индивидуального перемещения в вертикальном направлении и, также индивидуально, поворота в пределах угла наклона от 0 до 30o в сторону течения и против течения металла 24, 6 комплектов донных продувочных кирпичей 36 для инертного газа 30 (смесь N2/Ar, регулируемая в любых желаемых количественных соотношениях), расположенных парами (3 пары) в промежутках между фурмами 35 в плоской области дна емкости для переплава 3, максимальная скорость потока газа около 200 Нл/мин на продувочный кирпич 33 (максимальная скорость потока инертного газа в емкости для переплава около 1200 Нл/мин), одно отводное отверстие для нерафинированной стали 41, два люка для шлака 45, один порог для шлака 44, два люка для осмотра/ремонта 50;
д) сцеживающая емкость 2: ширина около 1,9 м, длина около 0,9 м, почти постоянная площадь углового поперечного сечения 2,5 м2 по кирпичной облицовке, 2 комплекта донных продувочных кирпичей 33 (1 пара) в плоской области дна сцеживающей емкости 2, максимальная скорость потока газа около 200 Нл/мин на продувочный кирпич 33 (максимальная скорость потока инертного газа в сцеживающей емкости около 400 Нл/мин), одно отводное отверстие 48 (используемое только для разгрузки емкости печи 1 и сцеживающей емкости 2), один люк 43 для отвода шлака 12.
В описываемом случае протекание процесса по изобретению осуществляется с непрерывной ванной по всей длине установки, при движении противотоком металла 24 и шлака 25, со вспененным шлаком 25 внутри емкости печи 1 и сцеживающей емкости 2, при непрерывном отводе нерафинированной стали 24 через отводное отверстие 41 и шлака 25 через люк для шлака 43, в квазистационарных технологических условиях в отношении профилей концентрации и температуры, материальных и тепловых потоков, а также степеней заполнения и уровней ванны в каждом отдельном узле установки.
15>