124450 (690013), страница 4
Текст из файла (страница 4)
, (4.38)
где
– энтальпия продуктов сгорания при температуре уходящих газов
;
– коэффициент избытка воздуха в уходящих газах (в данном случае коэффициент избытка воздуха по газоходам котла не меняется, то есть
);
– энтальпия теоретически необходимого количества воздуха при температуре холодного воздуха
. Температура уходящих газов для котлов подобного типа принимается равной 180 … 190 С.
6. ПАРОПРОИЗВОДИТЕЛЬНОСТЬ КОТЛА
Одним из основных параметров котельного агрегата является его номинальная паропроизводительность
, т. е. наибольшая паропроизводительность, которую котел должен обеспечивать в течение длительной эксплуатации при номинальных величинах параметров пара и питательной воды.
Однако при изменении количества, состава и температуры отходящих из технологической установки газов, изменении параметров вырабатываемого пара, а также конструкции поверхностей нагрева действительная паропроизводительность может отличаться от номинальной, вследствие чего она подлежит определению в поверочном тепловом расчете.
Паропроизводительность котла-утилизатора, в котором нет отбора к потребителям насыщенного пара и в котором отсутствует вторичный пароперегреватель, определяется по формуле:
, (4.39)
где
– расход смеси ОГ с ПГ;
– располагаемая теплота; – коэффициент использования теплоты, %;
,
,
– энтальпии соответственно перегретого пара, питательной воды и кипящей (продувочной) воды в барабане парового котла;
– коэффициент, учитывающий расход кипящей воды на непрерывную продувку2 котла. Величина этого коэффициента
, где
– расход продувочной воды, и составляет обычно 0,015 … 0,05. Температура питательной воды составляет 140 … 150 С.
7. ЭКСЕРГЕТИЧЕСКИЙ АНАЛИЗ ЭФФЕКТИВНОСТИ КОТЛА-УТИЛИЗАТОРА
В последние годы в практике инженерных расчетов для оценки степени термодинамического совершенства энерготехнологических систем, теплотехнических установок и их элементов все шире используется эксергетический анализ. В его основе лежит понятие эксергии, под которой понимают максимальную работу термодинамической системы при обратимом переходе ее в состояние равновесия с окружающей средой. Эксергетический метод термодинамического анализа позволяет оценить:
качество (потенциал) энергии с точки зрения ее работоспособности, в частности, располагаемые резервы утилизации вторичных энергоресурсов (отходящих газов какого-либо производства, горячей воды и пара, отработавших в технологических и силовых установках, и др.);
снижение качества (“деградацию”) энергии из-за необратимого протекания реальных процессов (горения, теплообмена, смешения, трения и т.д.)
В зависимости от вида термодинамической системы и энергии, которая преобразуется в работу, различают несколько видов эксергии. При анализе эффективности котла-утилизатора целесообразно использовать понятия эксергии потока вещества и химической эксергии.
7.1 Виды эксергии, используемые при анализе эффективности котла-утилизатора
7.1.1 Эксергия потока вещества
Эксергия потока вещества характеризует максимальную располагаемую работу, совершаемую потоком в процессе обратимого перехода из состояния, характеризуемого параметрами
,
, в состояние с параметрами окружающей среды
,
. Величина удельной (для единицы массового расхода) эксергии потока вещества определяется по формуле
, (7.1)
где
,
– удельные значения энтальпии и энтропии вещества в состоянии, характеризуемом параметрами
,
;
,
– значения указанных величин в состоянии равновесия с окружающей средой.
Уравнение (7.1) отражает единственно возможный путь обратимого перехода вещества из состояния
,
к состоянию
,
, обеспечивающий достижение
: сначала обратимый адиабатный процесс до момента, когда температура становится равной
, а затем изотермический процесс при
. Указанная последовательность процессов позволяет избежать потерь из-за внутренней и внешней необратимости, связанной с теплообменом при конечной разности температур.
В частном случае, когда давление в потоке близко к давлению окружающей среды
, а вещество близко по свойствам к идеальному газу, расчет разностей
и
можно выполнить на основе средних удельных теплоемкостей, выраженных эмпирическими уравнениями типа
. При этом расчетные формулы для однородного вещества имеют вид:
, (7.2)
, (7.3)
где
– среднелогарифмическая температура в интервале от
до
:
. (7.4)
К такому именно случаю можно отнести движение воздуха и продуктов сгорания в газоходах котельной установки.
Поскольку, как уже отмечалось ранее, расчеты котельной установки принято вести по отношению к единице количества топлива, отходящих газов или их смеси, соответственно будем иметь:
, (7.5)
, (7.6)
. (7.7)
Следует указать также на возможность приближенного вычисления эксергии потока вещества для указанного частного случая р1 р0 по формуле
. (7.8)
Установлено, что погрешность при использовании этой формулы в диапазоне температур Т = 273–2500 К составляет <3%, что допустимо для таких расчетов.
7.1.2 Химическая эксергия
Химическая (нулевая) эксергия
– это та максимальная работа, которая может быть получена в результате преобразования какого-либо вещества, т. е. определенного соединения химических элементов, в другие соединения этих элементов, наиболее распространенные в окружающей среде и находящиеся с ней в равновесии. Такое преобразование должно осуществляться в ходе обратимой химической реакции при
,
с участием дополнительных веществ (окислителя, катализатора).
Приближенно можно считать, что химическая эксэргия представляет собою теплоту реакции, взятую с обратным знаком. В частности, для топлива удельное значение ее можно брать примерно равной высшей теплоте сгорания
.
Для газообразного топлива, а также горючих отходящих газов:
, (7.9)
где
– низшая теплота сгорания.
7.2 Эксергетический баланс котла-утилизатора
Содержание эксергетического анализа составляют расчеты составляющих эксергетического баланса и эксергетического КПД.
В отличие от баланса энергии, баланс эксергии для любой установки может быть сведен лишь условно, если включить в число его составляющих эксэргию, потерянную в процессах преобразования энергии. Баланс эксергии может быть записан в двух формах, одна из которых имеет вид
, (7.10)
где
– суммарная эксергия, поступающая в установку с потоками вещества и энергии;
– суммарная эксергия, уходящая из установки;
– сумма потерь эксергии в установке.
Суммарная эксергия, поступающая в котел-утилизатор складывается из следующих составляющих:
, (7.11)
где
– химическая эксергия смеси отходящих газов с природным;
– физическая эксергия потока указанных газов;
– эксергия потока воздуха, поступающего в котел (на входе в воздухоподогреватель);
– эксергия потока питательной воды, поступающей в котел (на входе в экономайзер).
Величина химической эксергии смеси отходящих газов с природным, поступающей за единицу времени в котел-утилизатор, приближенно вычисляется по формуле:
. (7.12)
Физическая эксергия смеси отходящих газов с природным:
. (7.13)
Поскольку природный газ поступает из окружающей среды, его физическая эксергия равна нулю. Тогда
, (7.14)
где
;
– энтальпии отходящих газов, соответственно, при
и
.
Эксергия воздуха на входе в котел
, (7.15)
где
,
,
– энтальпии воздуха при
и
.
Эксергия питательной воды, поступающей в котел, находится в случае ее предварительного подогрева как
, (7.16)
где
,
– энтальпия и энтропия воды при
и заданном давлении в котле (находятся по таблицам воды и водяного пара);
,
– энтальпия и энтропия воды при
,
.
С достаточной степенью точности
и
для воды могут быть вычислены по формулам
и
, где
– теплоемкость воды:
= 4,19 кДж/(кгК).
Суммарный поток эксергии, уходящий из установки, складывается следующим образом:
, (7.17)
где
– эксергия потока перегретого пара;
– эксергия продуктов сгорания, покидающих котел (на выходе из экономайзера);
– эксергия продуктов неполного окисления (химический недожог) смеси отходящих и природного газов в топке котла;
– эксергия несгоревшего (физический недожог) топлива (для газообразных горючих
= 0);
– эксергия потока теплоты, теряемой через стенки котла в окружающую среду.
Эксергия потока перегретого пара
, (7.18)
где
,
– энтальпия и энтропия перегретого пара;
,
– энтальпия и энтропия воды при условиях окружающей среды.
Эксергия потока уходящих из котла продуктов сгорания
, (7.19)
где
.
Эксергия продуктов неполного окисления
. (7.20)
Эксергия потока теплоты в окружающую среду
, (7.21)
где
.
Потери эксергии обусловлены необратимостью процессов горения
, теплообмена
, трения и др., причем наибольший вклад вносят
и
, поэтому можно принять:
. (7.22)
Потери эксергии из-за необратимости процесса горения
, (7.23)
или
, (7.24)
где
– эксергия продуктов сгорания в топке при адиабатной температуре горения:
. (7.25)
Здесь
.
Потери эксергии из-за конечной разности температур при теплообмене
между продуктами сгорания, с одной стороны, и водой, паром, воздухом, с другой
. (7.26)
7.3 Эксергетический КПД котла-утилизатора
Эксергетический КПД
характеризует долю полезно использованной эксергии
, (7.27)
где
,
– соответственно затраченная и использованная эксергии;
– транзитная эксергия, то есть эксергия, которая проходит от входа в установку до выхода из нее, не участвуя в процессах преобразования энергии. Для котла-утилизатора в данном случае к транзитной эксергии относятся эксергии потоков питательной воды
и воздуха
, а также физическая эксергия потока отходящих газов сажевого производства.
В случае, когда отсутствует “вторичная” утилизация, т. е. не используются потенциалы работоспособности продуктов сгорания, уходящих из котла,
, теплоты наружного охлаждения
и теплоты сгорания продуктов неполного окисления
, последние могут рассматриваться как потери эксергии. Тогда формула (7.27) преобразуется к виду
. (7.28)
8. РАСЧЕТ ДЫМОВОЙ ТРУБЫ
Продукты сгорания удаляются из котла в атмосферу через дымовую трубу. Необходимая высота дымовой трубы при естественной тяге должна обеспечивать решение двух задач – достижение определенной скорости движения продуктов сгорания по газоходам котла, от которой зависит эффективность теплообмена в элементах котла, и вынос продуктов сгорания в более высокие слои атмосферы.
В современных промышленных котельных установках с помощью трубы решается, как правило лишь вторая задача, поскольку для получения требуемых скоростей потоков в газовых и воздушных трактах могут использоваться дутьевые вентиляторы и дымососы. Выбор последних осуществляется на основе результатов аэродинамического расчета котельной установки, который в данной работе не рассматривается.
При эвакуации продуктов сгорания из высотных дымовых труб их концентрация может быть снижена до нормативных значений за счет турбулентного перемешивания с большими объемами окружающего воздуха.
Особую опасность представляют вредные (токсичные) примеси. Для газообразного топлива при полном сгорании основными токсичными составляющими являются оксиды серы SО2, SО3 и оксиды азота NО, NО2. Около 99% оксидов серы составляет SО2 и в расчетах выбросов условно принимается, что вся сера переходит в SО2.
Оксиды азота образуются в зоне высоких температур (в ядре факела пламени) в предтопке в результате окисления азота, входящего в состав как смеси горючих газов, так и подаваемого воздуха. На выходе из дымовой трубы NО составляет до 95% от суммы NО + NО2. Однако в процессе распространения дымового факела в атмосфере происходит доокисление NО в NО2 кислородом воздуха. Поэтому массовый выброс оксидов азота из котлов рассчитывается по NО2.
Высота дымовой трубы должна обеспечивать такое рассеивание токсичных веществ в атмосфере, при котором их концентрация у поверхности земли будет меньше предельной допускаемой санитарными нормами. Разовая предельно допускаемая концентрация (ПДК) в атмосферном воздухе населенных мест не должна превышать по SО2 – 0,5 мг/м3, по NО2 – 0,085 мг/м3.
Минимально допустимая высота трубы, при которой выполняется указанное выше требование, рассчитывается по формуле (без учета фоновой загазованности от других источников):
Нmin
, (8.1)
где
– коэффициент, учитывающий характер атмосферных течений ( для Нижнего Поволжья принимают
= 200);
– безразмерный коэффициент, учитывающий скорость осаждения загрязняющих веществ в атмосфере (для газообразных веществ
=1);
,
– безразмерные коэффициенты, учитывающие условия выхода дымовых газов из устья трубы;
,
– массовые выбросы вредных веществ, г/с;
– максимальная разовая предельно допускаемая концентрация диоксида серы, мг/м3;
– объем всех выбрасываемых продуктов сгорания, м3/с:
;
– разность между температурой выбрасываемых из трубы продуктов сгорания и температурой атмосферного воздуха.
Массовый выброс окислов азота в г/с (в пересчете на NО2) рассчитывается по приближенной формуле
, (7.2)
где
– низшая теплота сгорания смеси горючих газов, КДж/м3;
– суммарный расход указанной смеси, м3/с; – поправочный коэффициент, учитывающий вид топлива и особенности сжигания (в данном случае принимается =1);
– выход NО2 на 1МДж теплоты, выделяющейся при сгорании, г/МДж. Значения
при сжигании газообразного топлива определяются по формулам:
для котлов паропроизводительностью
= 20 … 265 кг/с
, (7.3)
для котлов паропроизводительностью
= 8 … 20 кг/с
, (7.4)
При сжигании газового топлива SО2 образуется в ходе реакции окисления Н2S. В данном случае последний компонент присутствует только в составе отходящих газов, поэтому объем
в расчете на 1м3 смеси отходящих газов с природным составляет
, (7.5)
Объемный выброс диоксида серы в единицу времени
, м3/с:
. (7.6)
Массовый выброс диоксида серы
, г/с:
, (7.7)
где
– атмосферное давление;
– универсальная газовая постоянная;
– молекулярная масса SO2.
8.1 Расчет экономии топлива
Как уже отмечалось ранее, использование вторичных энергоресурсов, имеющихся практически во всех отраслях промышленности, где применяются теплотехнологические процессы, позволяет обеспечить значительную экономию топлива и энергии.
Экономия топлива за счет использования отходящих газов сажевого производства в котле-утилизаторе для выработки пара определяется по формуле
, (8.1)
где
– расход природного газа в смеси с отходящими газами;
– количество природного газа, которое потребовалось бы без использования отходящих газов для выработки такого же количества пара тех же параметров, что и в котле-утилизаторе.
Величина
приближенно вычисляется по формуле
, (8.2)
Где
.
Теплота, вносимая подогретым воздухом в топку (в расчете на 1м3 природного газа),
, (8.3)
где
– объем воздуха необходимый для сжигания 1м3 природного газа при =1.
На практике часто экономию топлива выражают в тоннах так называемого условного топлива, теплота сгорания которого составляет 29300 кДж/кг:
. (8.4)
ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ
1. Назначение котла-утилизатора.
2. Устройство котла-утилизатора типа ПКК, назначение его отдельных элементов.
3. Методика расчета процесса сгорания в котле-утилизаторе.
4. Как рассчитываются энтальпии воздуха и продуктов сгорания?
5. Тепловой баланс котла-утилизатора.
6. Коэффициент использования теплоты и его вычисление.
7. Что включает в себя располагаемая теплота?.
8. Методика расчета действительной паропроизводительности котла.
9. Адиабатная температура горения и ее вычисление.
10. Понятие эксергии.
11. Каковы цели эксергетического анализа котла-утилизатора?
12. Виды эксергии и расчетные формулы.
13. Эксергетический баланс котла-утилизатора.
14. Эксергетический КПД.
15. Формула для приближенного вычисления эксергии потока продуктов сгорания.
16. Формулы для вычисления эксергий потоков перегретого пара и питательной воды.
17. Виды потерь эксергии в котле.
18. Методика расчета дымовой трубы.
19. Методика расчета экономии топлива.
ПРИЛОЖЕНИЯ
Таблица П 1
Интерполяционные формулы для средних объемных теплоемкостей в изобарном процессе при атмосферном давлении 0,1013 МПа (линейная зависимость)
| ГАЗ | |
| ВОЗДУХ | |
| H2 | |
| N2 | |
| О2 | |
| СО | |
| СО2 | |
| Н2О | |
| СН4 | |
| Н2S | |
Здесь t в С.
Таблица П 2
Термодинамические свойства воды и водяного пара в состоянии насыщения
| р, МПа | 0,1 | 0,5 | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5 | 4,0 | 4,5 |
| tН, С | 99,63 | 151,85 | 179,88 | 198,28 | 212,37 | 223,94 | 233,84 | 242,54 | 250,33 | 257,41 |
| h,кДж/кг | 417,5 | 640,1 | 762,6 | 844,7 | 908,6 | 962,0 | 1008,4 | 1049,8 | 1087,5 | 1122,2 |
| h,кДж/кг | 2,6757 | 2748,5 | 2777,0 | 2790,4 | 2797,4 | 2800,8 | 2801,9 | 2801,3 | 2799,4 | 2796,5 |
Таблица П3
Термодинамические свойства воды и перегретого пара
| t, C | р = 2,0 МПа | р = 2,5 МПа | р = 4,5 МПа | ||||||
| , м3/кг | h, кДж/кг | s, кДж/(кгК) | , м3/кг | h, кДж/кг | s, кДж/(кгК) | , м3/кг | h, кДж/кг | s, кДж/(кгК) | |
| 0 | 0,00010 | 2,0 | 0,0000 | 0,00010 | 2,5 | 0,0000 | 0,00010 | 4,5 | 0,0002 |
| 50 | 0,00101 | 211,0 | 0,7026 | 0,00101 | 211,4 | 0,7023 | 0,00101 | 213,1 | 0,7014 |
| 100 | 0,00104 | 420,5 | 1,3054 | 0,00104 | 420,9 | 1,3050 | 0,00104 | 422,4 | 1,3034 |
| 150 | 0,00109 | 633,1 | 1,8399 | 0,00109 | 633,4 | 1,8394 | 0,00109 | 634,6 | 1,8372 |
| 200 | 0,00115 | 852,6 | 2,3300 | 0,00115 | 852,8 | 2,3292 | 0,00115 | 853,6 | 2,3260 |
| 250 | 0,1115 | 2902,5 | 6,5460 | 0,08701 | 2879,9 | 6,4087 | 0,00125 | 1085,8 | 2,7923 |
| 300 | 0,1255 | 3024,0 | 6,7679 | 0,09892 | 3009,4 | 6,6454 | 0,05136 | 2943,9 | 6,2848 |
| 350 | 0,1386 | 3137,2 | 6,9574 | 0,1098 | 3126,6 | 6,8415 | 0,05840 | 3081,3 | 6,5149 |
| 400 | 0,1512 | 3248,1 | 7,1285 | 0,1201 | 3239,9 | 7,0165 | 0,06473 | 3205,8 | 6,7071 |
| 450 | 0,1635 | 3357,7 | 7,2855 | 0,1301 | 3351,0 | 7,1758 | 0,07070 | 3323,8 | 6,8763 |
Примечание. Числовые значения выше разграничительной линии относятся к воде, ниже – к перегретому пару.
1 Теплота подогрева воздуха в воздухоподогревателе в выражении (4.33) не учитывается, так как это же количество теплоты отдается продуктами сгорания воздуху в воздухоподогревателе в пределах котельного агрегата, т. е. осуществляется регенерация (возврат) теплоты.
2 Продувка – это вывод из котла небольшого количества воды с большой концентрацией растворимых накипеобразующих солей.
3>














