124189 (689899), страница 2
Текст из файла (страница 2)
Вычисляем:
,
.
Откуда:
,
.
Для ЛАЧХ типа справедливо следующее соотношение:
, (2.6)
где — общий коэффициент усиления системы.
Подставляем:
.
Постоянные времени можно определить из соотношения:
. (2.7)
Численно:
,
,
.
В соответствии с формулой (2.1) записываем передаточную функцию желаемой разомкнутой системы:
.
Для построения ЛАЧХ необходимо вычислить логарифмы сопрягающих частот:
,
,
,
.
ЛАЧХ желаемой системы представлена на рис. 2.1.
Рисунок 2.1 — Логарифмическая амплитудно-частотная характеристика желаемой передаточной функции
Используя формулу (1.5), запишем передаточную функцию желаемой замкнутой системы с единичной отрицательной обратной связью:
.
Для расчета переходного процесса воспользуемся программой Perehod.exe, куда введем коэффициенты знаменателя и числителя. Получим график переходного процесса, представленный на рис 2.2.
Рисунок 2.2 — Переходный процесс в желаемой передаточной функции
Время переходного процесса и перерегулирование равны:
,
.
-
Расчет последовательного корректирующего устройства
-
-
Определение передаточной функции последовательного корректирующего устройства
Передаточную функцию последовательного корректирующего устройства найдем графическим методом, исходя из формулы:
. (2.8)
Для этого построим ЛАЧХ исходной системы, а затем графически вычтем из желаемой ЛАЧХ исходную, получим ЛАЧХ последовательного корректирующего устройства.
Передаточная функция исходной системы имеет вид:
.
Необходимые для построения ЛАЧХ сопрягающие частоты можно вычислить, преобразовав выражение (2.7):
. (2.9)
Откуда:
,
,
.
,
,
.
Рисунок 2.3 — Определение ЛАЧХ последовательного корректирующего устройства
В соответствии с рис. 2.3 передаточная функция последовательного корректирующего устройства будет иметь вид:
.
Тогда передаточная функция скорректированной последовательным корректирующим устройством разомкнутой системы будет равна:
.
Передаточная функция замкнутой системы в соответствии с формулой (1.5) примет вид:
.
-
Реализация последовательного корректирующего устройства
Используя перечень звеньев, приведенный в источнике [1], произведем реализацию последовательного корректирующего контура с помощью последовательного соединения двух звеньев, электрические схемы которых приведены на рис. 2.4.
Рисунок 2.4 — Электрические схемы звеньев последовательного корректирующего устройства
Первая схема реализует следующую передаточную функцию:
, (2.10)
где ;
;
;
;
.
Вторая схема реализует следующую передаточную функцию:
, (2.11)
где ;
;
.
Реализованная последовательным соединением этих двух звеньев передаточная функция будет иметь вид:
.
Сопоставляя данную передаточную функцию с выражениями (2.10) и (2.11), получим следующие параметры элементов, используемых в схемах.
Для первой схемы:
,
,
,
,
.
Для второй схемы:
,
,
.
Схема электрическая принципиальная последовательного корректирующего устройства приведена на рис. 2.5.
Рисунок 2.5 — Схема электрическая принципиальная последовательного корректирующего устройства
-
Оценка качества скорректированной САУ
Передаточная функция скорректированной последовательным корректирующим устройством разомкнутой системы будет равна:
.
Передаточная функция замкнутой системы в соответствии с формулой (1.5) примет вид:
.
С помощью программы Perehod.exe определяем время переходного процесса и перерегулирование:
,
.
Погрешность по времени переходного процесса будет равна:
.
Погрешность по перерегулированию:
.
График переходного процесса представлен на рисунке 2.6.
-
Расчет параллельного корректирующего устройства
-
-
Определение передаточной функции параллельного корректирующего устройства
-
Разделим данную структурную схему на две части: одну из частей будет описывать , а вторую —
. Второй части данной структурной схемы соответствует последовательное соединение звеньев, охваченное звеном параллельной коррекции. Следовательно:
Рисунок 2.6 — Переходной процесс в системе, скорректированной последовательным корректирующим звеном
,
.
Передаточную функцию параллельного корректирующего устройства найдем графическим методом, исходя из формулы:
, (2.12)
где — ЛАЧХ передаточной функции второй части фактической структурной схемы, то есть
.
В соответствии с рис. 2.7 передаточная функция параллельного корректирующего устройства будет иметь вид:
.
Тогда передаточная функция разомкнутой системы с параллельной коррекцией будет иметь вид:
, (2.13)
где .
= .
Подставляя в выражение (2.13), получим передаточную функцию скорректированной параллельным корректирующим устройством разомкнутой системы:
.
Передаточная функция замкнутой единичной обратной связью системы с параллельной коррекцией в соответствии с формулой (1.5) примет вид:
,
где .
Рисунок 2.7 — Определение ЛАЧХ параллельного корректирующего устройства
-
Реализация параллельного корректирующего устройства
Подбирая необходимые звенья из перечня, приведенного в источнике [1], произведем реализацию параллельного корректирующего контура с помощью последовательного соединения двух типов звеньев, электрические схемы которых приведены на рис. 2.8.
Рисунок 2.8 — Электрические схемы звеньев параллельного корректирующего устройства
Первая схема реализует следующую передаточную функцию:
, (2.14)
где ;
;
;
.
Вторая схема реализует следующую передаточную функцию:
, (2.15)
где ;
;
;
;
.
Реализованная последовательным соединением первого и двух вторых звеньев передаточная функция будет иметь вид:
.
Сопоставляя данную передаточную функцию с выражениями (2.14) и (2.15), получим следующие параметры элементов, используемых в схемах.
Для первого звена (первая схема рис. 2.8):
,
,
.
Для второго звена (вторая схема рис. 2.8):
,
,
,
.
Для третьего звена (вторая схема рис. 2.8):
,
,
,
.
Схема электрическая принципиальная последовательного корректирующего устройства приведена на рис. 2.9.
Рисунок 2.9 — Схема электрическая принципиальная параллельного корректирующего устройства
-
Оценка качества скорректированной САУ
Передаточная функция скорректированной параллельным корректирующим устройством разомкнутой системы будет равна:
.
Тогда передаточная функция той части схемы, которая охвачена параллельной коррекцией будет равна:
= .
Подставляя в выражение (2.13), получим передаточную функцию скорректированной параллельным корректирующим устройством разомкнутой системы:
.
Передаточная функция замкнутой единичной обратной связью системы с параллельной коррекцией в соответствии с формулой (1.5) примет вид:
,
где .
С помощью программы Perehod.exe определяем время переходного процесса и перерегулирование:
,
.
Погрешность по времени переходного процесса будет равна:
.
Погрешность по перерегулированию:
.
График переходного процесса представлен на рисунке 2.10.
Рисунок 2.10 — Переходной процесс в скорректированной системе
-
-
СИНТЕЗ САУ ВО ВРЕМЕННОЙ ОБЛАСТИ
-
-
Описание структурной схемы САУ в пространстве состояний
-
Методы анализа и синтеза САУ в пространстве состояний основаны на том, что любая линейная непрерывная система может быть описана дифференциальными уравнениями первого порядка.
Схематически САУ представляется в виде комбинаций интеграторов, сумматоров и усилителей.
На основании этого строим структурную схему САУ в пространстве состояний (рис. 3.1).
Рисунок 3.1 — Структурная схема САУ в пространстве состояний
На основании структурной схемы САУ в пространстве состояний (рис. 3.1) запишем матрицы коэффициентов, входных сигналов на интеграторы и выходных сигналов с интеграторов, которые будем использовать в дальнейшем для анализа системы:
,
,
.
-
-
Проектирование САУ с использованием обратных связей
-
-
Определение коэффициентов обратных связей и коэффициента регулятора
Используя программу Stvarfdbk.exe для разомкнутой системы, полученной в п. 3.1, получим следующие данные для проектирования САУ с использованием обратных связей:
-
коэффициенты знаменателя: 0; 55502,78; 17722,01; 320; 1;
-
корни: -250; -3,33; -66,67; 0;
-
коэффициенты числителя: 9440691.
Для дальнейших расчетов с использованием программы Stvarfdbk.exe, нам необходима передаточная функция желаемой системы:
.
Для того чтобы использовать данную программу, нам необходимо, чтобы знаменатель передаточной функции был четвертого порядка. Используем апериодическое звено первого порядка с :
.
В соответствии с формулой (1.5) передаточная функция замкнутой системы будет иметь вид:
.
Используя программу Stvarfdbk.exe в режиме проектирования, задав полученные выше значения, получим следующие данные:
-
коэффициенты числителя:
;
;
;
;
-
корни:
;
;
;
-
коэффициенты обратной связи:
;
;
;
;
-
коэффициент усиления:
;
-
характеристический полином замкнутой системы:
;
-
корни:
;
;
;
-
максимальная нормализованная ошибка:
.
Используя полученные данные, получим структурную схему САУ с коррекцией обратными связями (рис. 3.2).