124050 (689781), страница 4
Текст из файла (страница 4)
Учитывая всё вышесказанное, можно сделать вывод, что одним из существенных направлений по совершенствованию технологического процесса является улучшение проработки внутренней структуры металла при горячей деформации. Это приведёт к устранению большей части дефектов поковок.
Улучшить проработку структуры металла предлагается следующими способами.
1. Проводить протяжку с квадрата на круг на вырезных бойках, а не на плоских.
2. Обеспечить наиболее полное выдавливание из тела слитка предприбыльной дефектной зоны и создание в очаге деформации максимальных напряжений сжатия. Этого можно добиться совмещением операции осадки тела слитка с выдавливанием дефектной зоны в отверстие вогнутой сферической осадочной плиты, при этом также создаются условия неравномерного всестороннего сжатия, способствующие проработке структуры металла и завариванию внутренних дефектов. Такие условия обеспечиваются при соотношении наружного диаметра заготовки к диаметру отверстия плиты равном 1,3 – 1,35.
4. Разработка технологического процесса ковки
Исходными данными для разработки технологии изготовления заготовки кованого валка холодной прокатки являются чертёж детали и марка стали поковки. Эскиз рабочего валка стана холодной прокатки из стали 9X2МФ представлен на рис. 4.
Рис. 4. Эскиз рабочего валка стана холодной прокатки
Поковка такой формы относится ко второй группе сложности. Для назначения ковочных операций разработан эскиз поковки, а для этого предварительно назначены основные припуски, допуски и напуски на размеры детали в соответствии с ГОСТ 7062 – 90. Эскиз поковки показан на рис. 5.
Рис. 5. Эскиз поковки валка холодной прокатки
Судя по размерам поковки, она должна изготовляться на гидравлическим прессе. /2/ Разобьём объём поковки на три части так, как показано на рис. 5 /2, 3/:
, (4.1)
где ,
,
объём каждой из частей соответственно.
Объём можно представить, как
, (4.2)
где – длина участка I,
– диаметр участка I.
Найдём объём :
.
Аналогично рассчитываются объёмы и
:
;
.
Соответственно объём поковки будет равен
.
Масса поковки:
, (4.3)
где – плотность материала поковки, в данном случае
.
Рассчитаем массу поковки:
кг.
Длина обрубка с каждой стороны поковки валка составит
дм.
Объём обрубка :
.
Масса двух обрубков:
кг.
Для определения массы слитка, принятой за 100%, примем отход с его прибыльной части равным 23%, с донной части – 3% и угар металла от двух нагревов 4%, в сумме получим 23+3+4=30%. Таким образом, допускаемый процент использования металла слитка на поковку с обрубками и темплетом составляет =100 – 30=70%.
Теоретическая масса слитка:
кг. (4.4)
Из слитков, отливаемых на заводе, ближайшим по массе к теоретическому будет являться слиток массой 12900 кг. Во избежание образования трещин слиток передаётся из сталеплавильного в прессовый цех горячим.
Коэффициент выхода годного:
. (4.5)
Назначаем режим нагрева слитков исходя из максимального размера поперечного сечения (с учётом заводской технологической инструкцией по нагреву слитков и заготовок под ковку И 213–99). Температура начала ковки для стали 9Х2МФ установлена 1180º С, окончания ковки – не ниже 750 и не выше 800º С.
Технологический процесс ковки рабочего валка на прессе приведён в табл. 3, а эскизы ковочных переходов показаны на черт. 110600.06.00.00.00 ТЧ.
Вся технологическая цепочка в кузнечно-прессовом цехе, с учётом расположения основного технологического оборудования прессового участка (см. черт. 110600.06.00.00.00 ВО), будет выглядеть следующим образом. Горячие слитки из сталелитейного цеха передаются в вагоне-термосе на прессовый участок. Затем с помощью крана 11 слитки загружают в нагревательные печи 7, 8 или 9 для нагрева до ковочной температуры. После достижения требуемого нагрева один из слитков с помощью крана 6 подаётся к гидравлическому прессу 5.
Таблица 3. Технологический процесс ковки рабочего валка на прессе
Выносы | Основные операции | Применяемый инструмент |
1 | Ковка цапфы под патрон. Биллетировка. Рубка излишка | Бойки: нижний вырезной, верхний плоский; патрон. Топор односторонний |
Осадка на диаметр 1225 мм | Осадочные плиты: верхняя сферическая, нижняя вогнутая сферическая с отверстием | |
Проковать на 700 мм, l=2600 мм. Забить углы. | Бойки: верхний плоский, нижний плоский; патрон; кронциркуль | |
2 | Проковать на диаметр 560 мм, l=5100 мм | Бойки: верхний плоский, нижний вырезной; патрон; кронциркуль |
Разметка и надрубка участков I, II и III валка | Бойки: верхний плоский, нижний вырезной; патрон; раскатка; линейка | |
Проковать участки I и III на диаметр 435 мм, l=1500 мм. Оставить утолщение под надруб | Бойки: верхний плоский, нижний вырезной; патрон; кронциркуль | |
Надрубка поддона и поковки | Топор односторонний | |
Правка до поковочных размеров. Отделка поверхности. | Бойки: верхний плоский, нижний вырезной; патрон; кронциркуль | |
Рубка поддона и поковки | Топор односторонний | |
Маркировка поковки и отходов. Отправить в горячем состоянии на копёж | Клейма |
На гидравлическом прессе 5 с помощью крана 6 и манипулятора 3 осуществляется процесс ковки. Промежуточные нагревы проводят также в печах 7, 8 или 9. После завершения процесса ковки поковки с помощью крана 6 загружают на передаточную тележку 1, которая передаёт их на термический участок, где происходит копёж поковок, а затем их первичная термообработка.
5. Расчёт усилия ковочного пресса
Расчёт усилия ковочного пресса необходимо вести для самой энергоёмкой операции в конкретной технологической цепочки ковки. В нашем случае такой операцией является осадка. /3/
Итак, требуется определить усилие пресса для осадки биллета из стали марки 9Х2МФ диаметром =870 мм, высотой
=2160 мм до диаметра
=1225 мм и высоты
=1080 мм.
Необходимое усилие пресса для осадки:
, (5.1)
где F – площадь поперечного сечения поковки после осадки, ;
р – удельное усилие.
Удельное усилие можно представить, как
, (5.2)
где – предел текучести;
– скоростной коэффициент, равный при ковке на прессах
=1;
– масштабный коэффициент, равный в данном случае
=0,5;
– коэффициент, учитывающий условия контактного трения, форму и соотношение размеров деформируемой заготовки.
Для случая горячей осадки цилиндра при :
, (5.3)
где – коэффициент контактного трения при свободной ковке,
=0,5.
Произведём расчёт по формуле (5.3):
.
Площадь заготовки после осадки:
.
Рассчитаем среднее сопротивление деформации при осадке по методике ЧГТУ.
, (5.4)
где – степень деформации,
;
K0 – базовое сопротивление деформации;
– соответственно коэффициенты учета влияния скорости, степени и температуры на сопротивление деформации;
Uc – средняя скорость деформации, , где
– скорость движения траверсы пресса.
Для стали 9Х2МФ: K0=2733 МПа, Ku=0,148, K=0,1993, Kt=0,00244.
Произведём расчет по формуле (5.4):
МПа.
Рассчитаем удельное усилие по формуле (5.2):
МН/м2.
Необходимое усилие пресса для осадки найдем по формуле (5.1):
МН.
Таким образом, усилие пресса необходимое для осадки меньше номинального усилия гидравлического ковочного пресса ( , см. табл. 2), который используют для ковки заготовок валков холодной прокатки в условиях «ОРМЕТО-ЮУМЗ», поэтому и по разработанной технологии его применение возможно.
6. Расчёт часовой и годовой производительности пресса
Часовая производительность гидравлического ковочного пресса усилием 6000 тс в зависимости от группы сложности поковок представлена в табл. 4. /4/
Таблица 4. Часовая производительность гидравлического ковочного
пресса усилием 6000 тс
Группа сложности поковок | Производительность пресса, кг/ч |
I | 9500 |
II | 6200 |
III | 4600 |
IV | 2800 |
V | 1500 |
Средняя часовая производительность по всем группам сложности поковок равна
, (6.1)
где ,
,
,
,
– доля поковок каждой группы сложности в общем объёме производства поковок на прессе;
,
,
,
,
– часовая производительность каждой группы сложности поковок (см. табл. 4).
Доля поковок каждой группы сложности в общем объёме производства поковок на прессе представлена в табл. 5 (по производственным данным).
Таблица 5. Доля поковок каждой группы сложности в общем объёме производства поковок на прессе
Группа сложности поковок | I | II | III | IV | V |
Доля поковок каждой группы сложности в общем объёме производства поковок на прессе, % | 20 | 30 | 30 | 10 | 10 |
Средняя часовая производительность составит