123991 (689745), страница 2
Текст из файла (страница 2)
Варианты оребрения трубы: ребра можно изготовить в виде штампованных корыт, приваренных контактной сваркой или из полос, которые вставляют в канавки, а затем закрепляют обжатием кромок (завальцовка ребер роликами). Ребра могут быть получены накаткой или выдавливанием из металла трубы. Применяют также ребристые трубы с приварными штамп.
Для повышения эффективности теплообмена в трубном пространстве используют методы воздействия на поток устройствами, разрушающими и турбулизирующими движение потока в трубе. Это различного рода турбулизирующие вставки, вял ленточные, завихрители, установленные по всей длине трубы, обеспечивают закрутку потока, что является одним из эффективных способов интенсификации теплообмена в трубах. Широкое распространение из-за простоты изготовления получили ленточные завbхрители. Наиболее эффективная закрутка потока при этом реализуется, если лента вставлена в трубу практически без зазора. Дополнительный эффект в этом случае заключается в том. что винтовая вставка увеличивает поверхность теплообмена и воспринятое ею тепло посредством теплопроводности передается в стенку трубы.
Отечественные машиностроительные заводы освоили производство диафрагмированных труб, которые изготавливаются путем нанесения на гладкие трубы поперечных вертикальных (см. ХХП-14 a) или наклонных спиральных (см. ХХП-14. а) канавок. Вместо наклонных канавок можно устанавливать внутри труб турбулизаторы, представляющие собой спиральную проволоку. Приведен турбулизатор, применяемый при движении внутри трубы вяких продуктов или тогда, когда при необходимости требуется обеспечить на большой длине небольшое гидравлическое сопротивление.
Недостатками теплообменных аппаратов типа «труба в трубе» по сравнению с кожухотрубчатыми аппаратами являются большие габариты, а также более высокий расход металла на единицу поверхности нагрева.
Теплообменные аппараты типа «труба в трубе» жесткой конструкции, так же как и кожухотрубчатые с неподвижными решетками, используются при сравнительно небольшой разности температур тепло обменивающихся сред и при теплообмене незагрязненных жидкостей (частая очистка кольцевого пространства не требуется).
В теплообменных аппаратах типа «труба в трубе» разборной конструкции сравнительно легко очищаются внутренняя и наружная поверхности труб; эти аппараты обладают высоким коэффициентом теплопередачи и являются надежными в эксплуатации.
Коэффициент теплоотдачи.
Важнейшей и наиболее трудоемкой частью технологического расчета поверхности теплообменного аппарата является вычисление коэффициентов теплоотдачи. Методы определения этих величин изучаются в специальном курсе теплопередачи, здесь же приводится ряд формул, которыми и рекомендуется пользоваться при расчете теплообменных аппаратов. Коэффициент теплоотдачи от движущегося жидкого или газообразного потока зависит от режима движения: при ламинарном (струйном) потоке коэффициенты теплоотдачи обычно малы, а при турбулентном потоке более высоки и возрастают с увеличением степени турбулентности. Режим потока устанавливается в зависимости от значения безразмерного критерия Рейнольдса.
Поверхность теплообмена.
При известных количествах переданного тепла, средней разности температур между теплообменивающими средами и коэффициенте теплопередачи поверхность теплообмена определяется делением тепла на произведение средней разности температур и коэффициента теплопередачи.
Это справедливо для плоской стенки, а также для труб, если толщина стенки мала по сравнению с диаметром. Этим же уравнением следует пользоваться и для труб с относительно большой толщиной стенки, но в этом случае поверхность теплообмена должна вычисляться по среднему диаметру.
Если коэффициент теплопроводности стенки трубы достаточно высок (стенка металлическая), а коэффициенты теплоотдачи а < 1000. то величину среднего диаметра определяют по другому.
Наконец, если один из коэффициентов теплоотдачи значительно превосходит другой, то средний диаметр практически равен внутреннему или наружному диаметру трубы.
Средний температурный напор.
В большинстве производственных процессов тепло передается при переменных температурах одного или обоих теплообменивающихся потоков. Очевидно, в этом случае разность температур, или температурный напор, пропорционально которому передается тепло, также будет величиной переменной, меняющейся вдоль поверхности нагрева. В связи с этим возникает необходимость определения средней разности температур (среднего температурного напора) между теплообменивающимися средами. Это среднее значение температурного напора, естественно, зависит от характера изменения температур потоков вдоль поверхности теплообменного аппарата, который может быть различным К наиболее характерным случаям относятся: прямоток, противоток, перекрестный ток и смешанный ток.
Сопоставление температурных режимов работы теплообменных аппаратов при прямотоке и противотоке позволяет отметить, что при прямотоке максимальный температурный напор наблюдается у входа в теплообменный аппарат затем этот напор уменьшается, достигая своего минимального значения у выхода из аппарата. В противоположность этому при противотоке температурный напор более равномерно распределяется вдоль поверхности. Вследствие такого распределения температурного напора при прямотоке поверхность теплообмена в тепловом отношении загружена неравномерно при противотоке тепловая нагрузка является более равномерной.
Еще одно важное достоинство противотока: конечная температура нагревающейся среды может быть выше конечной температуры охлаждающейся среды. Это обстоятельство позволяет при регенерации тепла обеспечить более высокий подогрев нагреваемой среды а при охлаждении снизить расход охлаждающего агента и при том же его расходе понизить конечную температуру охлаждаемого продукта.
Таким образом, обеспечение противотока в теплообменном аппарате является желательным, однако часто с целью упрощения конструкции аппарата и по некоторым другим причинам приходится применять и другие схемы теплообмена.
1.5 Обслуживание и чистка теплообменника
Эксплуатация
Наиболее часто отложения зависят от температуры и при фиксированной мощности теплообменник с развитой поверхностью имеет меньшую температуру металла, чем в случае применения гладких труб. Тем самым снижается скорость образования отложений. Продольный поток также не имеет застойных зон, в которых могут накапливаться отложения. Наконец, когда на поверхности накапливаются отложения (уменьшаются коэффициенты теплоотдачи), увеличивается эффективность оребрения и тем самым частично компенсируются потери в теплоотдаче.
Теплообменники «труба в трубе» имеют небольшую массу и легко устанавливаются при использовании минимального количества монтажного оборудования. Они не требуют больших фундаментов и часто могут быть присоединены к существующим устройствам. Стандартные опоры имеют болтовые отверстия со всех четырех сторон. Это означает, что многосекционные аппараты легко могут быть смонтированы вместе. Трубы кожухов, соединенные последовательно, нуждаются только в прокладках, а для соединения внутренних труб можно использовать простые поворотные переходники. Простота конструкции, использование болтовых соединений, легкость оребренных труб и минимальное число узлов обеспечивают минимум стоимости. Отдельные элементы могут быть легко и быстро заменены, особенно если имеется в наличии запасной элемент такого же типа. Это позволяет производить очистку загрязненного элемента, не останавливая всего технологического процесса.
Ремонт и очистку теплообменной аппаратуры от накипи и загрязнений проводят в сроки, предусмотренные инструкциями. Перед началом работ полностью освобождают теплообменную аппаратуру от нефтепродуктов, открывают крышку, промывают трубное и межтрубное пространство водой, продувают паром и только после этого приступают к механической или химической очистке. Вместо промывки аппаратов обычными углеродами – растворителями (керосином, сольвентом и т.п.), целесообразно применять пожаробезопасные моющие средства.
Одной из причин ухудшения работы теплообменной аппаратуры является нарушение работы системы оборотного водоснабжения, в том числе повышение надёжности и экономичности процессов конденсации и охлаждения дистиллятов в нефтеперерабатывающей промышленности стали широко применять теплообменные аппараты воздушного охлаждения.
Следует, однако, отметить, что аппараты воздушного охлаждения обладают специфической опасностью, обусловленной наличием мощного вентиляционного агрегата. Уже отмечен случай, когда отрыв лопасти вызвал повреждение теплообменной системы, выхода горючих жидкостей и газов наружу, возникновение крупного пожара на блоке теплообменной аппаратуры.
1.6 Техника безопасности и охрана окружающей среды
Теплообменные аппараты, как и многие другие технологические аппараты нефтепереработки, создают пожарную опасность двойке рода:
во-первых, они сами, могут послужить местом возникновения развития пожара;
во-вторых они существенно влияют на пожарную опасность связанных с ними технологических аппаратов и установок в целом.
Пожары и загорания на теплообменных аппаратах возникают главным образом в результате образования неплотностей и повреждений при чрезмерном повышении давления, температурных деформациях и коррозии.
Повышенное давление в теплообменном аппарате может образовываться при отсутствии контроля и регулирования подачи нагреваемого продукта, образовании пробок в трубках или в линии за теплообменником из-за отложений, неправильной регулировке подачи теплоносителя.
Опасность потери герметичности особенно велика при пусках остановках теплообменных аппаратов. Ори этом наиболее вероятны две причины повреждения аппарата: в результате теплового расширения несжимаемой жидкости элементов и неравномерных температурных деформаций аппарата. В теплообменном аппарате (например, в кожухотрубчатом теплообменнике), предназначенном для подогрева жидких продуктов, опасен горячий (т. е. с подогревом) пуск при случайно оставленных, закрытыми задвижках на концах теплообменных труб, заполненных жидким продуктом. Находящаяся внутри отключенных труб жидкость при нагревании значительно увеличивается в объеме.
Неравномерные температурные деформации в теплообменном аппарате возникают в результате разности температур нагрева конструктивных элементов, жёстко связанных между собой. Для предотвращения опасных температурных деформаций ограничивают длину теплообменников, а при превышении безопасной длины в конструкции теплообменников предусматривают температурные компенсаторы (плавающая головка, сальниковое устройство, изогнутые трубки, линза).
В случае прохода через теплообменники высоковязких жидкостей с высокой температурой нагрева (например гудроновые теплообменники типа «труба в трубе») наружные поверхности теплообменных аппаратов, нагретые выше температуры самовоспламенения нефти и нефтепродуктов, могут послужить источниками зажигания при утечке жидкостей, паров и газов в атмосферу. Тепловая изоляция не устраняет эту опасность, если фланцевые соединения или другие фасонные детали теплообменников оставлены неизолированными.
Компактное расположение большого количества теплообменных аппаратов в блоках, наличие фланцевых соединений и задвижек, быстро теряющих герметичность во время пожара, а так же наличие тепловой изоляции, пропитанной нефтепродуктами, способствует быстрому развитию пожара.
Фундаменты для теплообменных аппаратов выполняют из негорючих и огнестойких материалов. Если теплообменники размещают на металлических конструкциях, то их защищают термоизоляцией или обкладывают у основания бетоном. Теплообменники ограждают у основания сплошной негорючей стеной высотой не менее 0,3 м, или кольцевым кюветом на расстоянии 0,5 м от выступающих частей аппаратуры.
Поверх теплоизоляции теплообменника рекомендуется надевать кожух из листвой стали, окрашенной в светлый цвет.
Периодически кожухи очищают от загрязнений, а при износе отдельных листов – заменяют новыми на работающем аппарате.
На пожарную опасность других технологических аппаратов и установок в целом теплообменные аппараты влияют прежде всего при ухудшении условий теплообмена. В результате уменьшения теплоотвода и степени конденсации в технологических аппаратах и трубопроводах, связанных с теплообменниками, конденсаторами и холодильниками, значительно возрастает давление, что означает пожароопасное нарушение технологического режима.
Нормальной работы установки необходимо выполнять все требования Федерального Закона «Об основах охраны труд в РФ» и Федерального Закона «О промышленной безопасности опасных производственных объектов».
Основные правила безопасности ведения технологического процесса. Безопасная работа зависит от квалификации и внимательности работающего персонала, а также от строгого соблюдения производственных инструкций и требований настоящего регламента.
К работе допускаются только те лица, которые прошли необходимую подготовку, сдали экзамены на допуск к рабочему месту и прошли инструктаж по охране труда и промышленной безопасности, стажировку не менее 10 смен.
Все действующие инструкции и положения по охране труда и промышленной безопасности должны быть в наличии, знание и их соблюдение персоналом должны постоянно контролироваться.
Работать разрешается только на исправном оборудовании, на исправных коммуникациях, арматуре и приборах КИП.
Систематически следить за исправностью и включением в работу приборов контроля и автоматики, систем сигнализации и автоматических блокировок. Постоянно следить за исправностью и работой сигнализаторов взрывоопасных концентраций. Не допускать загазованности территории и помещений.