123329 (689429)
Текст из файла
Кафедра “Основы проектирования машин”
Курсовое проектирование
Механизм поперечно-долбежного станка
Содержание
Введение
1 Синтез и анализ рычажного механизма
1.1 Структурный анализ механизма
1.2 Определение недостающих размеров
1.3 Определение скоростей точек механизма
1.4 Определение ускорений точек механизма
1.5 Диаграммы движения выходного звена
1.6 Определение угловых ускорений и скоростей
1.7 Определение ускорений центров масс звеньев механизма
1.8 Аналитический метод расчёта механизма
2 Силовой расчет рычажного механизма
2.1 Определение сил инерции
2.2 Расчет диады 4-5
2.3 Расчет диады 2-3
2.4 Расчет кривошипа
2.5 Определение уравновешивающей силы
2.6 Определение мощностей
2.7 Определение кинетической энергии и приведенного момента инерции механизма
3 Геометрический расчет зубчатой передачи. Проектирование планетарного механизма
3.1 Геометрический расчет зубчатой передачи
3.2 Определение передаточного отношения планетарной ступени и подбор чисел зубьев колес
3.3 Определение частот вращения зубчатых колес
4 Синтез и анализ кулачкового механизма
4.1 Масштабные коэффициенты диаграмм
4.2 Выбор минимального радиуса и построение профиля кулачка
4.3 Определение максимальной линейной скорости и ускорения толкателя
Список использованных источников
Введение
Долбежный станок предназначен для обработки фасонных отверстий (квадратных, шестигранных, шлицевых и др.), прорезание шпоночных пазов и канавок в конических и цилиндрических отверстияx, а также для строгания наружных коротких плоских и фасонных линейчатых поверхностей.
На рис. 3 изображена схема привода долбежного станка. От электродвигателя I движение через планетарный редуктор II и зубчатую передачу z5 –z6 передается на кривошипный вал 01 —01 кулисного механизма III долбежного станка.
На одном валу с зубчатым колесом z5 находится кулачок. Кулачковый механизм IV связан c насосом, предназначенным для смазки станка.
На рис. I изображена кинематическая схема передачи z5 –z6 кулисного механизма и кулачкового механизма.
На рис. 2 изображен график сил сопротивления резанию действующих на долбяк 5 при рабочем ходе.
На рис. 4 дается, схема зубчатого механизма согласно варианту задания.
На рис. 5 задается закон движения толкателя кулачкового механизма.
1 Синтез и анализ рычажного механизма
Исходные данные: а/BO2 = 0.5,BC/BO2 =4,Н = 140 мм; β = 360 ; nдв= 950 мин‾¹; к = 1,57.
1.1 Структурный анализ механизма
Степень подвижности механизма
Формула строения механизма:
Механизм II класса, 2 порядка.
1.2 Определение недостающих размеров
Угол размаха кулисы:
;
Длина кривошипа:
Масштабный коэффициент построения схемы:
Строим 12 планов механизма, приняв за начало отсчета крайнее правое положение, соответствующее началу рабочего хода механизма (в масштабе кl).
1.3 Определение скоростей звеньев механизма
Угловая скорость кривошипа равна:
где =130 – частота вращения кривошипа.
Кинематическая скорость точки А кривошипа в первом положении:
Масштабный коэффициент скоростей:
Скорость точки А1 кулисы определяем решая графически совместно систему:
причем: =0;
-скорость скольжения камня вдоль кулисы;
- скорость вращения точки А относительно точки о2 перпендикулярно кулисе.
На плане скоростей pva1 =66.5мм . Абсолютная величина скорости точки А1 кулисы из плана скоростей:
Скорость точки В находим по свойству подобия из соотношения:
Абсолютная величина скорости т. В:
Скорость точки С определяем решая совместно систему:
На плане pvс = 14 мм. Абсолютная величина скорости точки С:
Пример расчета выше для первого положения. Для остальных 11 положений скорости определяются аналогично, их значения приведены в таблице 1.1
Таблица 1.1 - Значения скоростей
Скорости, м/с | Положение механизма | |||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
А | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 | 1.36 |
А’ | 1.33 | 1.32 | 1.38 | 1.4 | 1.36 | 1.38 | 1.3 | 1.34 | 1.38 | 1.4 | 1.36 | 1.3 |
C | 0.28 | 0.38 | 0.58 | 0.78 | 0.74 | 0.68 | 0.28 | 0.56 | 1.38 | 1.24 | 0.42 | 0 |
B | 0.78 | 0.7 | 0.68 | 0.74 | 0.76 | 0.8 | 0.92 | 1.14 | 1.36 | 1.46 | 1.2 | 0.96 |
1.4 Определение ускорений точек механизма
Ускорение точки А кривошипа :
Ускорение направлено по кривошипу к центру вращения О1.
Масштабный коэффициент ускорения:
На плане ускорений изображаем ускорение точки А отрезком paa =46.24мм.
Ускорение точки А1 определяем решая совместно систему:
Значения ускорений из плана ускорений.
Ускорение точки В определяем по свойству подобия.
Абсолютная величина ускорения точки В.
Ускорение точки С находим решая совместно систему векторных уравнений:
Значения ускорений из плана ускорений.
Абсолютная величина ускорения точки С:
Пример расчета ускорения выполнен для первого положения. Ускорения для остальных положений механизма определяются аналогично. Значения ускорений сводим в таблицу 1.2.
Таблица 1.2- Значения ускорений.
Ускорения, м/с2 | Положение механизма | |||||||
1 | 3 | 5 | 7 | 9 | 11 | 0 | ||
aA | 18,49 | 18,49 | 18,49 | 18,49 | 18,49 | 18,49 | 18,49 | |
aAk | 24,5 | 3,2 | 5,2 | 12,8 | 9,6 | 13,26 | 13,2 | |
aA’ | 16,4 | 14,4 | 14,4 | 26,8 | 30,4 | 25,6 | 18,8 | |
aв | 10,08 | 7,6 | 8 | 18,4 | 29,6 | 22,4 | 13,2 | |
aCВ | 7,6 | 7,6 | 7,2 | 11,6 | 29,6 | 6,8 | 6,4 | |
aC | 5,6 | 3,6 | 3,2 | 17,6 | 8.6 | 18,4 | 8,8 |
1.5 Диаграммы движения выходного звена
Диаграмму перемещения S-t строим, используя полученную из плана механизма траекторию движения точки С.
По заданному графику перемещения S-t, Диаграммы скоростей V-t и ускорений а-t определяются из полученных 12-ти планов скоростей и планов ускорений.
Масштабные коэффициенты диаграмм:
1.6 Определение угловых скоростей и ускорений
Угловые скорости и ускорения звеньев механизма определяются для первого положения:
Определение относительных угловых скоростей:
1.7 Определение ускорений центров масс звеньев механизма
Ускорение центров масс звеньев механизмов определяется из плана ускорений:
находим по свойству подобия.
Скорости центров масс звеньев механизмов определяются из планов скоростей:
находим по свойству подобия.
1.8 Аналитический метод расчета
Исходные данные:
1. Расчет ведется для третьего положения кулисы:
2. В проекциях на координатные оси
3. Поделим второе уравнение на первое
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.