123286 (689418), страница 2
Текст из файла (страница 2)
Следовательно температура центра,
Определим время нагрева в сварочной зоне (IV участок)
tг=13150С;
Степень черноты газов
По номограмме находим
Откуда
Принимаем степень черноты металла
определим величину коэффициента Ск. г. м.:
Для определения критерия Bi и коэффициента температуропроводности α находим из приложения VI и VII
Коэффициенты теплопроводности и теплоемкости (по средней температуре металла на участке 1000 0С):
Отсюда критерий Вi будет равен:
На данном участке заготовка греется как массивное тело. Определим величину температурного критерия для поверхности металла.
Коэффициент температуропроводности будет равен
По номограмме для поверхности пластины находим величину критерия Фурье. F0=0,8
По номограмме для центра пластины по значениям F0 и Bi найдем
Следовательно температура центра,
Определим время выдержки (томления), пользуясь номограммой. Разность температур по сечению металла в начале выдержки составит:
Определим допустимую разность температур в конце выдержки, учитывая условие 2000С на 1м толщины заготовки;
2000С – 1 м
Тогда:
При
Средняя температура поверхности металла по толщине в зоне выдержки равна:
Находим коэффициенты теплопроводности и теплоемкости (по средней температуре металла на участке 11110С):
Коэффициент температуропроводности будет равен:
Время выдержки будет равно:
Таким образом время пребывания металла в печи составит:
19
Определение основных размеров печи
Для обеспечения заданной производительности 120т/ч
В печи постоянно находится следующее количество металла.
Масса одной заготовки равна
Найдем число заготовок в печи:
При однорядном расположении заготовок:
Длина печи
Ширина печи В= l+δ2=4,3+2*0,28 =4,86м
Площадь активного пода
Площадь габаритного пода
Высоту печи принимаем ту, что была принята при предварительном расчете.
Всю длину печи делим на зоны пропорционально времени нагрева:
Длина методической зоны
Длина I-ой сварочной зоны
Длина II-ой сварочной зоны
Длина томильной зоны
Напряженность габаритного пода печи
Т. е значение близко к тому, которое задавалось при предварительном расчете.
Выберем для печи следующую футеровку:
Свод подвесного типа из шамота класса А, толщиной 300 мм, стены двухслойные (шамот класса А δ = 3345 мм). И тепловая изоляция из диатомита δ = 115 мм, под томильной зоны трехслойный (тальк δ = 230 мм, шамот класса Б δ = 230 мм, диатомит δ = 115 мм).
Составление теплового баланса печи
Выполняем конструктивную разработку печи. В данном примере расчета это сделать не возможно. При составлении теплового баланса печи приходилось отпускать некоторые статьи расхода тепла, не превышающие 5% всего расхода.
Приход тепла:
тепло от сжигания топлива:
,
где В - искомый расход топлива, м/ч3
тепло, вносимое подогретым воздухом:
тепло экзотермических реакций (примем угар 1%, теплота сгорания железе 5650кДж/кг)
Расход тепла:
При составлении теплового баланса опущены следующие статьи расхода:
А) потери тепла излучением через открытые окна;
Б) потери от химической неполноты сгорания;
В) потери от механической неполноты сгорания.
1. тепло, затрачиваемое на нагрев металла:
при
2. тепло, уносимое уходящими газами. Определим теплоемкость дымовых газов при tух =8000С;
3. потери тепла через кладку теплопроводностью.
Потери через свод
Толщина свода 0,3 м, материал шамот. Принимаем, что температура внутренней поверхности свода равна температуре газов.
Средняя температура в печи:
Если считать, что температура наружной поверхности кладки около 500С, то средняя температура огнеупорного материала свода ~5900C.
По этой температуре выбираем коэффициент теплопроводности шамотного материала:
Таким образом, потери через свод составляют:
где α – коэффициент теплоотдачи от наружной поверхности стен к окружающему воздуху, равный 71,2 кДж/(м2*ч*0С)
Потери через стены. Кладка стен выполнена двухслойной (шамот 345 мм, диатомит 115 мм)
Площадь стен, м2:
Методической зоны
Сварочной зоны
Томильной зоны
Торцевых
Полная площадь стен 162,73 м2
При линейном распределении температуры по толщине стены средняя температура шамота будет равна 5500С, а диатомита 1500С.
Следовательно.
Полные потери через кладку
4. Потери тепла с охлаждающей водой по практическим данным принимаем равным 10% Qх прихода, то есть Qх+Qр
5. Неучтенные потери принимаем в размере 15% Q прихода тепла
Составим уравнение теплового баланса печи
Тепловой баланс печи сведем в табл.1; 2
Таблица 1
| Приход, к, Дж/ч | % |
| 1. Тепло, получаемое от сгорания топлива
| 81,4 |
| 2. Тепло, вносимое подогретым воздухом
| 13,45 |
| 3. Тепло экзотермических реакций
| 5,06 |
| Итого: | 100 |
Таблица 2
| Расход кДж/ч | % |
| Тепло затрачиваемое на нагрев металла
| 53 |
| тепло уходящих газов
| 26 |
| потери через кладку
| 1,9 |
| потери с охлаждающей водой
| 6,7 |
| неучтенные потери
| 10,6 |
| Итого: | 100 |
Удельный расход тепла на нагрев 1 кг металла составит
Выбор и расчет горелок
Принимаем, что в печи установлены горелки типа «труба в трубе».
В сварочных зонах 16 штук, в томильной 4шт. общее количество горелок 20шт. Определим расчетное количество воздуха приходящее на одну горелку.
где,
Vв - часовой расход воздуха;
ТВ - 400+273=673 К - температура подогрева воздуха;
N – количество горелок.
Давление воздуха перед горелкой принимаем 2,0 кПа. Следует что, требуемый расход воздуха обеспечивает горелка ДБВ 225.
Определим расчетное количество газа на одну горелку;
Где,
VГ =В=2667 часовой расход топлива;
ТГ =50+273=323 К - температура газа;
N – количество горелок.
8. Расчет рекуператора
Для подогрева воздуха проектируем металлический петлевой рекуператор из труб диаметром 57/49,5 мм с коридорным расположением их шагом
Исходные данные для расчета:
Часовой расход топлива В=2667 кДж/ч;
Расход воздуха на 1 м3 топлива Lα = 13,08 м3/м3;
Количество продуктов сгорания от 1 м3 горючего газа Vα =13,89 м3/м3;
Температура подогрева воздуха tв = 4000С;
Температура уходящих газов из печи tух=8000С.
Расчет:
Часовой расход воздуха:
Часовой выход дыма:
Часовое количество дыма, проходящего через рекуператор с учетом потерь дыма на выбивание и через обводной шибер и подсоса воздуха.
Коэффициент m, учитывая потери дыма, принимаем 0,7.
Коэффициент
, учитывающий подсос воздуха в боровах, примем 0,1.
Температура дыма перед рекуператором с учетом подсоса воздуха;
,
где iух – теплосодержание уходящих газов при tух=8000С
Этому теплосодержанию соответствует температура дыма tД=7500С. (см. Рис.67(3))
5. Температура дыма за рекуператором
Где
- теплосодержание воздуха при tВ=4000С;
27
- теплосодержание холодного воздуха
- коэффициент, учитывающий тепловые потери рекуператора в окружающую среду равный 0,9.
Этому теплосодержанию соответствует температура дыма tД=4400С.
Среднелогарифмический напор
коэффициент теплопередачи в рекуператоре
где, α` - коэффициент теплопередачи на дымовой стороне;
α`` - то же, на воздушной стороне,
где,
- коэффициент теплоотдачи излучением,
- коэффициент теплоотдачи конвекцией.
Определим эффективную толщину газового слоя S
Средняя температура дыма в рекуператоре
При tД=5950С, S=0, 193 и αизл=9 Вт/(м2град)
Величина
определяется по формуле
где, С=1+0,1*Х1/d=1+0,1*2=1,2
принимаем скорость дыма
Общий коэффициент теплоотдачи на дымовой стороне
Коэффициент теплоотдачи на воздушной стороне
28
Средняя температура воздуха
Принимаем скорость воздуха
Коэффициент теплопередачи
Поверхность нагрева рекуператора;
Произведем компоновку редуктора
Число U образных элементов
















