123183 (689394), страница 4

Файл №689394 123183 (Измерение температуры свода электросталеплавильных печей) 4 страница123183 (689394) страница 42016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

В окислительный период для предотвращения перегрева металла снижают на 25-40% подводимую к печи электрическую мощность по сравнению с первоначальной в период расплавления.

Наиболее сложной технологической задачей, решаемой в этот период является дефосфорация металла. Эту задачу решают путем обновления шлака, которое осуществляют одним или двумя скачиваниями, либо непрерывным самотеком.

Поскольку шлак в электропечах плохо вспенивается, то для интенсификации его вспенивания, а следовательно и процесса дефосфорации в ДСП подают шлакообразующую смесь следующего состава: известь - твердый окислитель -плавиковый шпат в соотношении 7:3:1.

Высокая эффективность процесса дефосфорации достигается при вдувании такой смеси в ванну в порошкообразном состоянии. Степень дефосфорации при этом достигается 90-95%. Обновление шлака также в какой-то мере способствует и десульфации металла.

Удаление фосфора из металла в основном определяется основностью шлака и температурой металла. Увеличение основности шлака повышает его дефосфорирующую способность, но только до величины не более 2,4 - 2,6. При дальнейшем увеличении основности шлака это уже не оказывает заметного влияния на удаление фосфора. Для увеличения дефосфорирующей способности шлака необходимо увеличивать содержание в нем монооксида железа (FеО). Повышение температуры металла ухудшает условия окисления фосфора. В ДСП удаление фосфора частично происходит еще в период расплавления, когда температура ванны недостаточно высока. Очевидно, поэтому содержание фосфора в первичном шлаке обычно выше.

Кремний в окислительный период практически полностью окисляется и переходит в шлак еще в начале окислительного периода.

Окисление марганца определяется температурой металла и содержанием оксидов железа, марганца, кальция и кремния в шлаке.

При выплавке сталей в ДСП важно определять окисление (угар) дорогостоящих легирующих элементов: хрома, вольфрама, ванадия и др.

Окисление хрома увеличивается с увеличением температуры металла и основности шлака. Окисление вольфрама и ванадия происходит интенсивнее с увеличением основности шлака.

Во всех случаях в окислительный период большое значение имеет получение оперативной и достоверной информации о текущем (непрерывном) температурном состоянии металла и огнеупорной кладки рабочего пространства ДСП и составе расплавленного металла .

Если по технологии процесс доводки стали осуществляется непосредственно в ДСП, то после окислительного периода начинается восстановительный период.

Восстановительный период электродуговой плавки в ДСП осуществляется если выплавляемый металл не подвергается дальнейшей внепечной доводки для решения следующих задач:

  • диффузионное раскисление металла;

  • завершение десульфации металла;

  • легирование металла;

  • нагрев металла до заданной температуры выпуска.

После завершения окислительного периода проводят максимально полное скачивание шлака, чтобы вывести из металла фосфор, содержащийся в нем.

Затем в печь загружают в кусковом виде или вдувают в виде порошка шлакообразующую смесь, состоящую из извести, плавикого шпата и шамота в соотношении 5:1:1. Из этой смеси в течение 10-15 минут формируется начальный шлак, содержащий до 60% СаО, 10-15% CaF2, 5-10% SiO2, 3-5% FeO.

Для раскисления этого шлака на него подают коксик, что приводит к снижению FeO приблизительно до 1,5%. При этом шлак меняет цвет и становится серым. Дальнейшее раскисление шлака осуществляется смесью коксика и ферросилиция ФС-75. Это приводит к снижению содержания FeО до 0,5%. При этом шлак становится белого цвета.

В случае выплавки легированных сталей в восстановительный период производится легирование металла различными элементами.

Никель и молибден практически не окисляются в процессе электроплавки и вводятся в начальный момент окислительного периода. Хром, марганец, вольфрам вводят в металл в начале восстановительного периода после слива окислительного шлака. Кремний, ванадий, титан, алюминий обладают достаточно большим сродством к кислороду и легко окисляются в процессе электродуговой плавки. Поэтому эти элементы вводят в печь за несколько минут до выпуска стали.

Потребление тепла в восстановительный период не велико, поэтому работа ведется на пониженных ступенях напряжения, т.е. на пониженной мощности. Рекомендуется работать на коротких дугах, поскольку при этом меньше тепла передается излучением или на длинных дугах погруженных в пенистый шлак.

Для улучшения перемешивания шлака и металла, а также для интенсификации медленно протекающих процессов перехода серы в шлак, удаления кислорода и неметаллических включений из металла рекомендуется продувать металл аргоном через донные пористые пробки или использовать электромагнитное перемешивание ванны. Последнюю рекомендацию реализовать на большинстве ДСП технически очень сложно.

Методы измерения температуры

При измерении температуры различают 2 метода – контактный и бесконтактный.

К приборам контактного метода относятся:

• термометры расширения, измеряющие температуру по тепловому расширению жидкостей (ртуть, керосин, спирт) (жидкостные термометры) или твердых тел (дилатометрические и биметаллические термометры);

• термометры манометрические, использующие зависимость между температурой и давлением газа (газовые термометры) или насыщенных паров жидкости (конденсационные термометры), а также между температурой и объемом жидкости (жидкостные термометры) в замкнутом пространстве термосистемы;

• термометры (преобразователи) термоэлектрические, действие которых основано на измерении термоэлектродвижущей силы (термо-э. д. с.), развиваемой термопарой (спаем) из двух разнородных проводников (ТХА, ТХК, ТПП и др);

• термометры (термопреобразователи) сопротивления, использующие зависимость электрического сопротивления вещества (медь, платина) от его температуры (ТСМ, ТСП и др.);

Также существуют термометры сопротивления и термометры термоэлектрические с унифицированным выходным (токовым) сигналом (ТСМУ, ТСПУ, ТХАУ, ТХКУ и др.). Для измерения разности температур в системах теплоснабжения используют комплекты термометров (КТСПР, КТПТР), специально подобранных по техническим параметрам (ΔR0, ΔW100).

К приборам бесконтактного метода относятся пирометры (пирометрические термометры):

яркостные, измеряющие температуру по яркости накаленного тела в заданном узком диапазоне длин волн; радиационные, измеряющие температуру по тепловому действию суммарного излучения нагретого тела (во всем диапазоне длин волн); цветовые, принцип действия которых основан на измерении отношения энергий, излучаемых телом в разных спектральных диапазонах. По характеру получения информации различают пирометрические термометры для локального измерения температуры в данной точке объекта и для анализа температурных полей.

Таблица 2. Наиболее распространенные устройства для измерения температуры

Термометрическое

свойство

Наименование

устройства

Пределы длительного применения, 0С

Нижний

верхний

Тепловое

расширение

Жидкостные

стеклянные

термометры

-190

600

Изменение давления

Манометрические

термометры

-160

60

Изменение

электрического

сопротивления

Электрические термометры

сопротивления.

Полупроводниковые термометры сопротивления

-200

-90

500

180

Термоэлектрические

эффекты

Термоэлектрические термометры (термопары) стандартизованные.

Термоэлектрические термометры (термопары) специальные

-50

1300

1600

2500

Тепловое излучение

Оптические пирометры.

Радиационные пирометры.

Фотоэлектрические пирометры.

Цветовые пирометры

700

20

600

1400

6000

3000

4000

2800

Измерение температуры в технологических периодах

Для теплового режима процесса плавки стали в дуговых сталеплавильных печах (ДСП) приоритетное значение имеет наличие непрерывного способа оценки температурного состояния расплава в заключительный период плавки. В этом случае ведение процесса плавки становится прогнозируемым, что позволяет получить заданную марку стали с минимальными энергетическими затратами.

На сегодняшний день существует два основных метода измерения температуры жидкой стали, позволяющих оценить текущее тепловое состояние расплава в технологический (жидкий) период электроплавки.

1. Метод непрерывного измерения температуры, когда термопара устанавливается через футеровку печи в защитном водоохлаждаемом кожухе после расплавления металла.

2. Метод периодического измерения температуры путем погружения термопары со сменным наконечником в жидкую сталь через смотровое рабочее окно.

На рис.6 представлено изменение температуры металла во времени в окислительный период плавки №510598 в ДСП-180 №2 ЭСПЦ ОАО «ММК» при выплавке стали марки СтЗПС.

Измерение температуры осуществлялось штатной термопарой погружения в интервалы времени, отмеченные на рис.6 точками.

Интенсивный разогрев внутренней поверхности огнеупорной кладки в районе горения дуг в окислительный период, несмотря на наличие водоохлаждаемых панелей и вспенивание шлака, вынуждает уменьшать подводимую ДСП энергетическую мощность. Это приводит к замедлению физико-химических процессов происходящих в расплаве, и увеличению продолжительности плавки.

Рис. 6. Изменение температуры металла во времени в окислительный период в ДСП-180 №2 ЭСПЦ ОАО «ММК»


В любой производственной ситуации для поддержания рационального теплового режима электродуговой плавки необходима непрерывная текущая информация о значении температуры металла и шлака в текущий момент плавки.

Реально в ЭСПЦ составляются директивные указания (технологические инструкции) регламентирующие температурный режим и соответствующий этому режиму подвод электрической мощности к печи и регламентированные расходы природного газа и кислорода на горелки КСВ при выплавке определенной марки стали по заданному программному профилю.

В теплообменных процессах при высокопроизводительной работе ДСП-180 активно участвует только небольшой 15-35 мм слой огнеупорной кладки печи. Объективными параметрами, однозначно характеризующими и оценивающими текущее тепловое состояние современного высокопроизводительного технологического процесса выплавки стали в ДСП, являются температура металла tм(т) и температура огнеупорной футеровки tк(т).

Практически момент расплавления фиксируется визуально (субъективно Индивидуальным методом) сталеваром и подтверждается назначением регламентируемой процедуры измерения температуры расплава tМо.

В настоящее время только периодически регламентированный во времени контроль температуры металла и шлака осуществляет технолог (подручный сталевара) термопарой погружения со сменным наконечником.

Исследователями установлено, что температура металла на 80-100°С меньше температуры шлака. С одной стороны подводимая к ДСП электрическая мощность должна обеспечивать необходимую максимальную скорость и полноту протекания химико-физических процессов, возможно быстрый нагрев и расплавление подаваемых в печь шлакообразующих, раскисляющих и легирующих компонентов, а с другой стороны не допускать превышения температуры огнеупорной футеровки рабочего пространства и температуры охлаждающей воды на сливе выше предельно допустимых значений.

Заметное влияние на тепловой режим при выплавки стали в современных ДСП оказывают различные способы интенсификации технологического теплового процессов.

Сложность тепловых и технологических процессов, отсутствие надежного простого непрерывного контроля температуры металла создают значительные проблемы при разработке математических моделей теплового или температурного режимов в жидкие периоды электродуговой плавки. Как правило, существующие математические модели температурного режима электроплавки являются расчетно-статистическими, т.е. статическими по своей сути и не позволяют эффективно и целенаправленно изменять параметры энергетического режима в динамике по ходу процесса выплавки стали в ДСП.

Характеристики

Тип файла
Документ
Размер
16,26 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее