123086 (689355), страница 2
Текст из файла (страница 2)
Рисунок 1.3- Центробежно-ударная дробилка
Изобретение относится к области дробления твердых материалов, а именно к центробежно-ударным дробилкам, и может быть использовано, например, в горнорудной и металлургической промышленности для дробления минерального сырья, а также в других отраслях промышленности.
Цель изобретения - повышение надежности дробилки.
Центробежно-ударная дробилка содержит корпус 1 с отражательными поверхностями 2. Корпус 1 снабжен загрузочным буккером 3 с питающей трубой 4 и разгрузочным отверстием 5. В корпусе 1 над отражательными поверхностями 2 установлена цилиндрическая обечайка 6. По оси корпуса 1 на вертикальном валу 7, приводимом во вращение от электродвигателя 8 посредством клиноременной передачи 9, установлен ротор 10, содержащий верхний 11 и нижний 12 диски, загрузочное отверстие 13, разгонные каналы 14. На периферии ротора 10 в подшипниковых опорах 15, закрепленных на верхнем 11 и нижнем 12 дисках ротора 10, установлены вертикальные оси 16. На вертикальных осях 16 между дисками 11 и 12 ротора 10 расположены ролики-ускорители 17, а над верхним диском 11 ротора 10 - ролики сателлиты 18. Ролики-сателлиты 18 находятся во фрикционном зацеплении с внутренней поверхностью цилиндрической обечайки 6.
Центробежно-ударная дробилка работает следующим образом.
Исходный материал через загрузочный бункер 3, питающую трубу 4, загрузочное отверстие 13 ротора 10 поступает в разгонные каналы 14. Ролики-сателлиты 18, откатываясь по внутренней поверхности цилиндрической обечайки 6, совершают планетарное вращательное движение и посредством вертикальных осей 16 сообщают это движение роликам-ускорителям 17. Перерабатываемый материал из разгонных каналов 14 поступает из ролики-ускорители 17, при этом линейная скорость поверхности роликов-ускорителей 17 близка к относительной скорости материала при его выходе из разгонных каналов 14, т е. относительная скорость поверхности роликов-ускорителей 17 и потока материала близка к нулю. Материал, перемещаясь совместно с поверхностью роликов-ускорителей 17, по достижении точки вылета выбрасывается с высокой абсолютной скоростью и, попадая на отражательные элементы 2, разрушается. Дробленный продукт разгружается через разгрузочное отверстие 5.
Дополнительная установка в верхней части корпуса 1 дробилки цилиндрической обечайки 6, а на вертикальных осях 16 роликов-ускорителей 17-роликов-сателитов 18, примыкающих к внутренней поверхности цилиндрической обечайки б, позволяет принудительно приводить ролики-ускорители 17 во вращение, используя для этого только основной привод дробилки. При этом, если осуществлять вращение роликов-ускорителей 17 таким образом, что линейная скорость их поверхности будет равной или близкой скорости движения материала на выходном участке разгонных каналов 14 ротора 10 дробилки, износ поверхности роликов-ускорителей 17 будет снижен. При этом заклинивание роликов-ускорителей при работе исключается, так как они приводятся во вращение принудительно, посредством фрикционной передачи, а в случае заклинивания оно будет устранено с потреблением для этого части мощного основного привода.
Для обеспечения равенства линейной скорости поверхности роликов-ускорителей 17 и относительной скорости движения материала на данном участке необходимо выбрать оптимальные геометрические параметры роликов-сателлитов 18.
Рисунок 1.4- Ударные элементы дробилки
1.3 Обоснование принятых решений
Одним из новых видов машин для дробления и измельчения строительных материалов является молотковая дробилка.
В основу конструкции положен принцип многоярусной дробилки ударного действия с вертикальной осью вращения рабочего органа. В качестве рабочих элементов применены шарнирно закрепленные ударные элементы. Между рядами ударных элементов на внутренней поверхности корпуса установлены отражатели, предотвращающие проскоки неизмельченного материала вдоль стенок корпуса. Отражатели способствуют возвращению материала в зону обработки и увеличению кратности воздействия на него.
Рисунок 1.5- Молотковая дробилка
Предложенная дробилка обладает рядом дополнительных преимуществ перед машинами ударного действия:
- меньшей удельной мощностью (на единицу продукции). Молотковые дробилки такой же производительности имеют электродвигатель в 1,5..2,0 раза большей мощности, чем центробежные дробилки;
- попадание даже крупных недробимых включений не приводит к поломке машины, так как рабочий элемент отклоняется в сторону и не препятствует их прохождению;
- более лучшими условиями ремонта, т.е. широким доступом ко всем механизмам, быстросъемностью узлов и ударных элементов;
- совмещением технологических операций, т.е. совмещением процессов дробления, смешивания и сушки;
- удалением из технологического процесса рассева по фракциям;
- способностью работать как по сухому, так и по мокрому способу.
Дробилка предназначена для переработки материалов, обладающих повышенной пластичностью.
На рисунке 1.5 представлен общий вид дробилки.
Она состоит из рабочей камеры 1 с крышкой 2 и дном 3. В крышке 2 находится загрузочное отверстие 4: а в дне 3 - выходное.
Внутри рабочей камеры 1 установлен рабочий вал закрепленный в подшипниковых опорах. На рабочем валу закреплены рабочие органы - била. Рабочий вал приводится во вращение клиноременной передачей 5 от электродвигателя 6.
Клиноременная передача 5 имеет защитный кожух.
Электродвигатель 6 закреплен на плите 7 с натяжным устройством .
На стенках рабочей камеры, имеются два ряда отбойников, предназначенных для предотвращения проскока неизмельченного материала в зазоре между стенкой корпуса и свободными концами рабочих органов.
Рабочая камера 1 имеет дверь 8, предназначенную для ремонтных работ при замене бил. Дробилка должна устанавливаться опорами 9 на раму 10 при монтаже. Обрабатываемый материал должен поступать в рабочую камеру через загрузочное отверстие в крышке в непрерывном режиме при включенном приводе (вращение рабочего вала). В рабочей камере он обрабатывается рабочими органами и через выходное отверстие дна 3 удаляется.
Регулирование степени измельчения осуществляется изменением количества (скоростью) подаваемого в зону обработки материала. Также возможна регулировка путем установки или удаления яруса бил.
2. Расчет основных параметров
Для молотковых дробилок основным критерием для расчетов является критическая линейная скорость ротора, при которой возможно разрушение материала заданной крупности.
(2.1)
где -предел прочности материала при растяжении,
=25Мпа;
-объемная масса дробимого материала,
=1400кг/м3;
d-диаметр дробимого материала, d=0,2м.
Принимаем 40 м /с.
Исходя из рекомендаций литературы /4/, принимают диаметр дробилки:
(2.2)
Найдя необходимую скорость удара рабочего органа по измельчаемому материалу и, задавшись диаметром дробилки D=1000 мм, мы можем определить необходимую угловую скорость вращения ротора дробилки:
(2.3)
где R-радиус траектории движения ударного элемента;
Частота вращения ротора связана с угловой скоростью следующей зависимостью:
(2.4)
Длина ротора дробилки определяется следующей зависимостью:
(2.5)
Принимаем длину ротора дробилки L=800 мм.
Число бил будет зависеть от физико-механических свойств обрабатываемого материала. Большое количество ярусов будет замедлять прохождение материала через рабочую зону и, в конечном счете, сказываться на производительности. А так же пострадает качество измельчения- возможно появление эффекта переизмельчения. При малом же числе бил будет наблюдаться проскакивание частиц материала и вследствие малого воздействия на материал, он не будет достигать требуемой степени дробления. Обычно необходимое количество бил устанавливается опытным путем. Мы принимаем число бил:
Nярусов=4
Число ударных элементов также влияет на все, о чем было сказано выше. Минимальное количество должно быть не менее 2, чтобы уравновесить вал ротора. Большое их количество снижает силу удара по частицам материала. Мы принимаем:
Nэл=4.
2.1 Определение производительности
По условию задания производительность дробилки должна быть до 25 т/час. Определим производительность в кубометрах:
(2.6)
где - объемная масса материала, = 1,4 т/м3;
2.2 Определение мощности на привод дробилки
Для определения мощности на привод дробилки воспользуемся формулой ВНИИСтройдормаша, разработанной на основе закона поверхностей:
(2.7)
где -энергетический показатель разрушения материала,
=3,6 Втчас/м2;
-производительность дробилки,
=17,86м3/час;
-степень дробления,
=200/8=25;
-КПД дробилки,
=0,8;
-КПД привода,
=0,94.
Принимаем электродвигатель АИР160М6 мощностью 15 кВт
Частота вращения n=970 об/мин. Кратность пускового момента=2.
3. Расчеты на прочность
3.1 Расчет подшипников
3.1.1 Расчет подшипников ротора по статической
грузоподъемности
Расчет проведем по рекомендациям /5/ по формуле 16.28 :
Ро < Со ,(3.1)
где Ро- эквивалентная статическая нагрузка,
Со- статическая грузоподъемность подшипника.
Расчет проведем для нижнего подшипника ротора. Приведенная нагрузка определяется по формуле /6, стр 328/:
Ро=ХR+YA,(3.2)
где Х- коэффициент радиальной нагрузки, Х =0,4;
R- радиальная нагрузка, R =1156Н
Y-коэффициент осевой нагрузки, Y=1;
A-осевая нагрузка-вес ротора, A =2000Н;
Ро=0,41156+12000)=2062Н
Со - величина статической грузоподъемности подшипника, для роликоподшипника конического однорядного с внутренним диаметром 90 мм она составляет Со=89600 Н.