122798 (689233), страница 3
Текст из файла (страница 3)
(11),
де Vтруб - обєм трубопровода від Р.О. до входу аппарат.
3.2 Розрахунок основних параметрів ТОК
Для знаходження параметрів об’єкта необхідно знати що:
Виконавчий механізм буде мати передаточну функцію:
.
3.3 Вибір та обгрунтування типу перехідного процесу
Оскільки в контурі регулювання маємо запізнення то з трьох типових перехідних процесів вибираємо один, а саме з 20% перерегулюванням. Даний перехідний процес забезпечить оптимальний час регулювання і необхідну точність.
3.4 Визначення закону регулювання
При виборі типу регулятора орієнтуємось на величину відношення запізнення до сталої часу об’єкта –
. Для нашого випадку
. Отже вибираємо цифровий ПІД-регулятор, який має компенсувати запізнення в контурі регулювання.
3.5 Розрахунок оптимальних настроювальних параметрів регулятора
Розраховуємо оптимальні настроювання для ПІД-регулятора. Для даного регулятора і прийнятого перехідного процесу знаходимо:
де
- коефіцієнт підсилення регулятор;
- час ізодрома (постійна інтегрування регулятора);
- постійна диференціювання.
Передаточна функція регулятора
.
3.6 Обгрунтування та вибір типу регулятора для проектованого контура регулювання
Виходячи з попередніх пунктів можна вибрати мікропроцесорний регулятор МИК-21. Даний регулятор досить легко настроюється, має малу похибку та високу швидкодію. Коротка технічна характеристика даного регулятора приведену вище в таблиці 3.
3.7. Побудова перехідного процесу розрахованої САР
Для побудови перехідного процесу використаємо програму MatLab і середовище Simulink. У вікні складемо наступний замкнутий контур і доразу оптимізуємо його підібравши відповідні коефіцієнти за допомогою блока NCD OutPort :
В результаті моделювання отримаємо наступний перехідний процес:
Рис. 6. Перехідний процес в контурі регулювання
Час регулювання складає 30с, перерегулювання 20%.
В результаті оптимізації коефіцієнти ПІД регулятора для нашої системи виявились такими Кр=82,86; Кі=10,15; Kd=1,12
Повністю дослідимо нашу систему за допомогою середовища Simulink програми MatLab для цього складемо наступну схему:
Після чого отримані наступні характеристики нашого контуру:
Перехідна характеристика:
Імпульсна характеристика:
Діаграма Боде АЧХ та ФЧХ:
Годограф:
3.8. Розрахунок показників надійності розрахованого контура регулювання
Ефективність застосування ТЗА в більшості випадків визначається їх надійністю. Зробимо розрахунок надійності розробленого контуру регулювання. Контур складається з 3 блоків: давача, регулятора і виконавчого механізму. Інтенсивність відмов для давача складає
год-1. Кількість відмов
. Інтенсивність відмов для регулятора складає
год-1. Кількість відмов
. Інтенсивність відмов для виконавчого механізму складає
год-1. Кількість відмов
.
Надійність даного контуру буде описуватися експоненціальним законом розподілу.
Загальна інтенсивність відмов:
;
год-1.
Середній час наробітку до відмови:
;
год.
Розрахуємо ймовірність безвідмовної роботи на проміжку часу 10000 год. Для експоненціального закону розподілу:
Отримаємо:
.
Отже ймовірність безвідмовної роботи даного контуру напротязі часу 10000 год складає 70%.
4. Створення автоматизованої системи управління технологічним процесом (АСУ ТП)
TRACE MODE (ТРЕЙС МОУД) – це найбільш поширена SCADA-система в країнах СНД. Вона призначена для розробки великих розподілених АСКТП широкого призначення. ТРЕЙС МОУД створена в 1992 році фірмою AdAstra Research Group Ltd.(Росія) і до теперішнього часу має більш ніж 4500 інсталяцій. Системи які розроблені на базі ТРЕЙС МОУД працюють в енергетиці, металургії, нафтовій, газовій, хімічній і іншій галузях промисловості та у комунальному господарстві. По числу впроваджень ТРЕЙС МОУД значно випереджає закордонні пакети подібного класу.
ТРЕЙС МОУД - заснована на інноваційних, що не мають аналогів технологіях. Серед них: розробка розподіленої АСУТП як єдиного проекту, автопобудова, оригінальні алгоритми обробки сигналів і керування, об'ємна векторна графіка мнемосхем, єдиний мережевий час, унікальна технологія playback - графічного перегляду архівів на робочих місцях керівників. ТРЕЙС МОУД - це перша інтегрована SCADA- і softlogic-система, що підтримує наскрізне програмування операторських станцій і контролерів за допомогою єдиного інструменту.
Основними функціями ТРЕЙС МОУД являються наступні:
- Модульна структура - від 128 до 64000х16 I/O.
- Кількість тегів необмежена;
- Мінімальний цикл системи рівний 0.001 с;
- Відкритий формат драйвера для зв'язку з будь-яким УСО.
- Відкритість для програмування (Visual Basic, Visual C++ і т.д.);
- Вбудовані бібліотеки з більш ніж 150 алгоритмами обробки даних і керування в т.ч. фільтрація, PID, PDD, нечітке, адаптивне, позиційне регулювання, ШІМ, керування пристроями (клапан, засувка, привод і т.д.), статистичні функції і довільні алгоритми;
- Автоматичне гаряче резервування;
- Підтримка єдиного мережевого часу;
- Засоби програмування контролерів і АРМ на основі міжнародного стандарту IEC 1131-3;
- Більш ніж 200 типів форм графічного відображення інформації в т.ч. тренди, мультиплікація на основі растрових і векторних зображень, Active;
- Перегляд архівної інформації в реальному часі в т.ч. у виді трендів і таблиць;
- Мережа на основі Netbios, NetBEUI, IPX/SPX, TCP/IP;
- Автоматичне резервування архівів і автовідновлення після збою;
- Моніторинг і керування через Internet;
- Технічна підтримка на російській мові.
ТРЕЙС МОУД 5 представляє нове покоління засобів проектування АСУТП. Основні відмінності від технологій реалізованих у старих SCADA-системах зводяться до наступних трьох ключових технологій:
- Єдині інструментальні засоби (єдина лінія програмування), як для розробки операторських станцій, так і для програмування контролерів. Єдина база даних реального часу для операторських станцій і контролерів;
- Розробка розподіленої АСУТП як єдиного проекту. Єдина розподілена база даних реального часу;
- Автопобудова проекту.
Суть автопобудови полягає в автоматичній генерації баз каналів операторських станцій і контролерів, що входять у проект АСУТП на основі інформації про число крапок введення/виведення, номенклатурі використовуваних контролерів і УСО, наявності і характері зв'язків між ПК і контролерами. У ТРЕЙС МОУД 5 реалізовані наступні процедури автопобудови:
Автопобудова баз каналів для зв'язку з УСО в РС-контролерах - автоматичне формування баз каналів кожного контролера і его настроювання на УСО на основі інформації про число і марку РС-контролерів, використовуваних у проекті. Технологія автопобудови підтримується в контролерах Micro PC, Круїз, МФК, MIC2000, Advantech PCL і д.р.;
Автопобудова баз каналів для зв'язку зі звичайними контролерами - автоматичне генерування бази каналів операторських станцій і настроювання на найбільш розповсюджені в Росії контролери, наприклад Реміконт, Ломіконт, Ш-711, ТСМ, ЭК-2000, ADAM 4000, ADAM5000, Allen Bradley, Siemens і ін.;
Автопобудова зв'язків між вузлами: "ПК-ПК", "ПК-контролери" - автоматичне створення, підтримка і відновлення комунікацій (наприклад мережевих, RS-232/485, Profibus і т.д.) між вузлами розподіленої АСУТП;
Автопобудова при імпорті баз технологічних параметрів.
При роботі в реальному часі технологія автопобудови відслідковує зміни бази каналів на різних вузлах розподіленої АСУТП (на операторських станціях і в контролерах) і автоматично проводить необхідні зміни. Так наприклад, якщо додати( видалити ) датчик, ТРЕЙС МОУД автоматично додасть(видалить) і настроїть канали на усіх вузлах розподіленої АСУ.
4.1 Створення бази інформаційних каналів автоматизованої системи керування технологічним процесом
У даному вікні виводяться зображення об‘єктів бази каналів. Ліва колонка об‘єктів – це стандартні об‘єкти бази каналів, заповнення цих об‘єктів каналами здійснюється автоматично у міру їх додавання до бази каналів. При цьому настройки каналу визначають, у який із стандартних об‘єктів він буде поміщений.
Наступна колонка містить об‘єкти, створені автопобудовою для зв‘язку з модулями вводу-виводу контролера або з каналами іншого вузла проекту. Канали, розміщені у даних об‘єктах, будуть також присутні у стандартних типах Аналоговый ввод, Дискретный ввод та Дискретный вывод.
Повний список каналів, що присутні в інформаційній базі каналів, доступний у стандартному об‘єкті База. Крім того, на екрані з‘явиться іще одне вікно, в якому розташовані графічні зображення вузлів проекту. Воно дозволяє швидко переключатися між вузлами проекту















