109053 (689187), страница 4

Файл №689187 109053 (Генетика) 4 страница109053 (689187) страница 42016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

3. Полимерия. Многие признаки определяются несколькими парами генов. Это характерно, в основном, для количественных признаков, таких как яйценоскость у кур, жирность молока у коров. Впервые это явление было впервые установлено Г. Нильсоном-Эле, который изучал наследования окраски семян овса. В результате многократных скрещиваний он получил семена, чей цвет варьировался от желтого до черного через промежуточные оттенки серого разной интенсивности. Цвет семян определялся двумя парами генов. Доминантные гомозиготы по обеим парам имели черную окраску, а рецессивные гомозиготы - желтую. Промежуточные формы имели серую окраску, причем было установлена прямая зависимость интенсивности окраски от числа доминантных аллелей; так организмы с генотипом АаВв были темнее, чем с генотипом Аавв, но светлее, чем с генотипом ААВв.

Признак может определятся и более, чем двумя генами. Например, у человека интенсивность окраски кожи определяется несколькими парами генов. Было выдвинута теория, что цвет кожи зависит от пяти пар генов. Самая темная кожа (у негроидной расы) будет определятся генотипом ААВВССDDЕЕ, тогда как у мулата будут присутствовать рецессивные аллели, а у европеоидной расы генотип будет ааввссddее. Принцип полимерного наследования можно записать в виде неравенства:

ААВВСС<…<АаВвСс<…<ааввсс

4. Плейотропное действие гена. При плейотропном действии гена один ген определяет развитие или влияет на проявление нескольких признаков. Это свойство генов было хорошо исследовано на мышах. Из схемы, видно, что ген определяет несколько признаков и признак определяется несколькими генами, поэтому можно сделать вывод, что плейотропное действие гена неразрывно связано с полимерным взаимодействием генов.

Поподробнее можно рассмотреть действие одного гена на ряд признаков на примере карликовости у мышей. Карликовые мыши получились в результате мутации и их изучение началось в Гарвардском университете в 1929 году. При скрещивании фенотипически нормальных мышей ? были карликовыми, из чего был сделан вывод, что карликовось обусловлена рецессивным геном. Рецессивные гомозиготы прекращали расти на второй неделе, были неспособны к размножению, внутренние органы, особенно железы внутренней секреции, имели измененную форму, мыши были менее подвижны и плохо переносили перепады температур.

Ген карликовости определял ненормальное развитие гипофиза, который, в свою очередь, определял раннюю остановку роста (изменение пропорций тела), ненормальное развитие половых желез (следовательно, стерильность), ненормальное развитие щитовидной железы, которое определяло пониженный обмен веществ, поэтому карликовые мыши были чувствительны к холоду, но более стойкие к голоду. Это цепочка последовательного изменения признаков при дефекте только одного гена. Пример плейотропного действия гена у человека - наследование дефекта ногтей и дефекта коленной чашечки, за которое отвечает один ген.

5. Летальные гены. Летальность генов - одна из разновидностей плейотропного действия гена. Так один ген, определяющий какой-либо признак, влияет так же на жизнеспособность в целом.

Ярким примером летальности гена служит ген платиновости у лисиц. До 30-х годов ХХ века не было платиновых лисиц, а были только серебристые. Этот ген появился тогда в результате мутации. Платиновый мех вошел в моду и стал очень дорогим, поэтому перед селекционерами встала задача вывести породу платиновых лисиц, то есть вывести чистую линию платиновых лисиц. Было установлено, что ген платиновости - доминантный. Для получения чистой линии скрещивали платиновых лисиц, из которых, по закону Менделя, одна четверть должна быть гомозиготной по доминантному гену. Но при дальнейшем скрещивании потомков у них все равно встречались серебристые щенки, что свидетельствовало об их гетерозиготности. Усомниться в правильности второго закона Менделя было невозможно, поэтому стали искать другие причины. Оказалось, что соотношение платиновых щенков к серебристым было 2 к1, что тоже противоречило закону Менделя, но был установлен другой факт - у платиновых лисиц в помете было 3-4 лисят, тогда как норма - 4-5 лисят. Из этого было установлено, что доминантные гомозиготы погибают в период эмбрионального развития, поэтому выведение чистой линии оказалось невозможным. Ген, определяющий смертельное нарушение развития в эмбриональный период, называется летальным. Интересно заметить, что в гетерозиготном состоянии мутантный ген не приводил к летальным последствиям, тогда как проявлялся в гомозиготном, поэтому можно сделать вывод, что летальный ген рецессивный. Значит, плейотропный ген может быть одновременно и доминантным, и рецессивным по разным своим проявлениям (в данном случае рассматриваемый ген доминантный для окраски, но рецессивный для летальности. Летальность может также определятся доминантным геном, но в этом случае потомок погибает до рождения или в раннем детстве, поэтому не может иметь потомства и передать этот ген по наследству.

Помимо летальных генов существуют сублетальные гены, которые вызывают врожденные заболевания, ведущие к смерти в детстве до наступления половозрелости, хотя есть и исключения. Примером доминантного сублетального гена является ген, определяющий заболевание ретинобластомой, при котором в раннем детстве развивается раковая опухоль в глазу. Раньше это заболевание всегда приводило к смерти, а сейчас проводят операции, спасающие от смерти, но приводящие к слепоте на один или на оба глаза.

Модификационная изменчивость.

Модификационная изменчивость относится к ненаследственной изменчивости. Она отражает взаимодействие генотипа и среды. Под влиянием среды изменяется только фенотип, а генотип остается неизменным, поэтому модификационная изменчивость не наследуется. Модификационная изменчивость четко прослеживается у растений, так как они во многих случаях размножаются вегетативным путем, поэтому большое число организмов может обладать одинаковым генотипом. Рассмотрим модификационную изменчивость у картофеля. Все клубни одного растения имеют одинаковый генотип, однако клубни все разного размера и формы. Это объясняется тем, что условия их развития отличались: некоторые клубни получали больше воды или питательных веществ, другие меньше. Если же высадить клубни одного растения в разную почву, то и растения получатся разные: например, если высадить в благоприятную почву маленький клубень, а в скудную - большой, то в первом случае вырастет большое растение, а во втором - хилое, слабое растение небольших размеров, что еще раз подтверждает изменение фенотипа под влиянием среды.

У животных одинаковых генотипов не существует, за исключением случаев однояйцевых близнецов, имеющих абсолютно идентичные генотипы. Они представляют особенный интерес для исследования. Однояйцевые близнецы рождаются иногда у крупного рогатого скота, у свиней и овец, но случается это редко. Если однояйцевых близнецов свиньи кормить по разному, то рост и вес у них будет различным. Если же свиней с различными генотипами одинаково кормить, то окажется, что для каждой свиньи будут свои пределы, до которых она может прибавлять в весе. Эта граница называется нормой реакции, которая определяет диапазон изменения фенотипа под влиянием внешней среды. Норма реакции для каждого организма разная. Тогда как модификационная изменчивость не наследуется, норма реакции является наследственным признаком. Куры одной породы, имеющих определенную яйценоскость, будут передавать своим потомкам уровень своей яйценоскости, и даже при самых благоприятных условиях яйценоскость потомков не превысит яйценоскость родительских особей.

Модификационная изменчивость является важной для приспособления организмов к изменяющимся условиям. Она обладает следующими особенностями:

a) Модификационная изменчивость носит направленный характер и является адекватной реакцией организма на изменившиеся условия. На солнце у людей для защиты от вредного излучения не начинают, например, расти уши, а начинает вырабатываться пигмент меланин, кожа становиться темнее, т.е. организм адекватно прореагировал на изменившуюся среду.

b) Модификационная изменчивость в подавляющем большинстве случаев полезна. Она позволяет организму быстро приспособиться к изменяющимся условиям и выжить в них.

c) Модификационная изменчивость характерна для всего вида, а норма реакции для каждого организма индивидуальна. Изменение количества молока в зависимости от кормежки присуща всем коровам, но для каждой коровы размеры изменения удоя будут разными: одна корова может дать от 1000 до 2500 литров молока в год, а другая от 2500 до 5000.

d) Модификационная изменчивость обратима, т.е. фенотип изменяется только под воздействием некоторых внешних факторов, а когда они прекращают свое воздействие на организм, то внешний вид возвращается к первоначальному. Человек, загоревший на пляже и вернувшийся домой, перестает подвергаться воздействию солнечных лучей в большом количестве, поэтому фермент вырабатывается в меньших количествах и кожа постепенно светлеет.

e) Модификационная изменчивость характерна в основном для количественных признаков, а не для качественных. Например, вес человека зависит от его питания, подвижности и легко изменяется при изменении этих условий, но цвет глаз не изменится от того, что человек съел или от температуры на улице. Но некоторые признаки все же изменяются под влиянием среды. У сиамских котят цвет шерсти зависит от температуры: все котята рождаются светлыми, так как в эмбриональном периоде они находятся под воздействием высокой температуры, но в дальнейшем котята, растущие в более холодных условиях становятся темнее, чем котята, воспитывающиеся в тепле.

Комбинативная изменчивость.

В каждом виде существует огромное количество особей, ни одна из которых не похожа на другую на сто процентов. За счет чего получается такое разнообразие особей и дети не являются точными копиями родителей? Причиной этого является комбинативная изменчивость. При половом размножении у потомка получается неповторимая комбинация родительских генов, которая получается в следствии следующих процессов:

Кроссинговер, обмен участками хромосом между гомологичными хромосомами, создает новые комбинации тех же самых родительских генов в случайном порядке.

Случайное расхождение гомологичных хромосом к разным полюсам в мейозе обеспечивают новые сочетания генов в гаметах.

Случайная встреча гамет при оплодотворении.

При комбинативной изменчивости каждая следующая особь в потомстве отличается от другой (исключение составляют однояйцовые близнецы), поэтому закрепление у потомков благоприятного сочетания генов в селекции для выведения лучшей породы вызывает затруднения. Для этих целей скрещивают родственные особи и выводятся чистые линии.

Мутационная изменчивость.

Самое важное свойство генов - их способность передаваться неизменными от поколению к поколению. Однако, если бы гены оставались бы неизменными на протяжении всей истории развития жизни на Земле, невозможна была бы эволюция. Изменения в генетическом материале действительно происходят. Например, в стадах анконской овцы появились коротконогие особи, и эта коротконогость передавалась в поколениях (коротконогие овцы были в моде у фермеров, так как они не могли перепрыгивать через изгороди). Такими изменениями заинтересовался Чарльз Дарвин. Он назвал их “спортами”. В 1901 году был введен новый термин для обозначения изменений Де Фризом, который изучал генетические изменения у растений и наблюдал их наследование, и назвал их “мутациями”. Мутации - это случайно возникшие стойкие изменения генотипа, затрагивающие или хромосомы, или отдельные гены. Процесс возникновения мутации называется мутагенезом, а организм, в генотипе которого произошла мутация, называется мутантом.

Мутации можно классифицировать по нескольким признакам. Во-первых, по “полезности”: мутации чаще всего носят “вредный” характер, приводят к серьезным изменениям в развитии организмов; нейтральные мутации приводят к изменениям фенотипа, не влияющих кардинально на развития организма (например, возникновение аллеля новой окраски шерсти у животных); полезные мутации имеют важную роль в эволюционном развитии, благодаря которым возникают генотипы, лучше приспособленные к условиям среды и обладающие большей жизнеспособностью. Во-вторых, по наследованию: наследственные мутации возникают в половых клетках и передаются потомству, ненаследственные мутации возникают в соматических клетках, поэтому они не наследуются, но результатом соматической мутации в некоторых случаях могут быть такие заболевания, как рак. В-третьих, мутации можно разделить на геномные, хромосомные и генные (точечные), которые будут рассмотрены ниже.

1. Геномные мутации.

Геномные мутации выражаются в увеличении числа хромосом. существует два вида геномных мутаций: анэуплоидия и полиплоидия.

Полиплоидия существует в двух формах: аутоплоидия и аллоплоидия. При аутоплоидии происходит кратное увеличении всего набора хромосом: если принять гаплоидный набор хромосом за n, то диплоидный набор, характерный для большинства организмов обозначается 2n, а полиплоиды будут иметь тройной набор хромосом (3n - триплоид), четверной набор хромосом (4n - тетраплоид) и т.д. Приставки три-, тетра-, пента- показывают, во сколько раз увеличивается набор хромосом. Причиной аутоплоидии является нарушение мейоза: не образуется веретено деления и весь набор хромосом оказывается в одной клетке. В результате ядро увеличивается в размере, а реакцией на увеличение ядра является увеличение всей клетки., а потом и всего организма. Было замечено, что аутоплоидные организмы более морозоустойчивы и жизнеспособны, поэтому большая часть растений в условиях сурового климата являются полиплоидными: в северных странах - Исландии, Финляндии, Швеции, Норвегии - половины всех растений полиплоидны, на острове Шпицберген их удельный вес составляет до 80%, а в альпийской флоре Памира 85% полиплоидов. Так же полиплоидия часто встречается у однодольных растений; например, среди рода роз встречаются виды с 7, 14, 21 и 28 хромосомами, т.е. виды отличаются кратным числом хромосом, что говорит о том, что виды произошли от одного вида путем геномных мутаций.

При кажущейся абсолютной выгоде аутоплоидных мутантов есть свои проблемы. Усложняется процесс размножения и наследования. Триплоиды, обычно, полностью бесплодны, так как при мейозе три хромосомы одной пары не могут поделиться поровну между двумя дочерними клетками. Плодовитость тетраплоидов понижена, так как при мейозе конъюгируют четыре хромосомы одной пары, что повышает возможность ошибки при расхождении, в результате которой получаются нежизнеспособные гаметы. По этой причине животные редко бывают полиплоидами, а растения достаточно часто переходят в полиплоидную форму, так как в дальнейшем полиплоиды будут размножаться вегетативным путем.

Схема наследования тоже становится более сложной. Тетраплоид, например, может иметь три типа гетерозигот, так как каждый ген у него представлен четырьмя локусами: Аааа, ААаа и АААа. В случае полного доминирования никакой разницы не существует, но в случае неполного доминирования разные гетерозоготы будут иметь разную интенсивность проявления признака. Простое менделевское наследование тоже не действует: при моногибридном скрещивании получается отношение не 3:1, а 35:1, а при дигибридном не 9:3:3:1, а 1224:35:35:1.

Так как у полиплоидов ген представлен большим числом аллелей, усиливающих развитие признака, то у них нередко проявляется явление гетерозиса (пышное развитие и повышение жизнеспособности у гетерозигот, по сравнению с гомозиготами). При этом у тетраплоидов гораздо легче сохраняется гетерозиготность, то и явление гетерозиса не будет вырождаться, как это происходит у диплоидов вследствие перехода потомков к гомозиготному состоянию.

Значение полиплоидов в сельском хозяйстве велико, так как большое количество культурных растений полиплоидны: из простой одноядерной пшеницы (2n, 14 хромосом) получили тетраплоидную твердую пшеницу (4n, 28 хромосом, применяется при изготовлении макарон) и гексаплоидную пшеницу (6n, 42 хромосомы, применяется для изготовления хлеба); тетраплоидный картофель и хлопчатник тоже приобрели широкое распространение.

Случаи полиплоидии известны для соматических клеток некоторых животных. У мухи дрозофилы в клетках слюны содержится многократно удвоенный набор хромосом (количество хромосом удваивается, но клетка к митозу не переходит), поэтому образуются огромные клетки.

Аутополиплоидия может быть получена естественным и искусственным (колхицин разрушает веретено деления, поэтому он используется в селекции для искусственного получения полиплоидии) путями. Но существует другая форма полиплоидии - аллоплоидия, которая может быть получена только искуственным путем. Она была открыта в 1924 году советским ученым Крапченко, который создал капустно-редечный гибрид. Он скрестил эти два вида, каждый из которых имеет в гаплоидном наборе девять хромосом. в гибриде получилось 18 хромосом, но гибрид оказался бесплодным, так как хромосомы разных видов не могли конъюгировать и правильно расходиться к полюсам при делении клетки. При помощи колхицина Крапченко растворил веретено деления и в гамете оказались все 18 хромосом. При оплодотворении в зиготе уже было 36 хромосом, попарно распределенных, поэтому такой гибрид был вполне плодовит и сочетал в себе признаки обоих видов. Итак, аллоплоид - гибрид с диплоидным набором хромосом двух разных видов.

Второй вид геномных мутаций - анэуплоидия. При анэуплоидии происходит утеря или приобретение хромосомы по одной паре. В случае утери хромосомы (2n-1) мутантов называют моносомиками, в случае приобретения хромосомы (2n+1) - трисомиками. Анэуплоидия возникает, когда в ходе деления клетки обе хромосомы одной пары идут к одному полюсу, а к другому - ни одной. При оплодотворении первой гаметы другой гаметой с нормальным набором хромосом получится трисомик, а второй - моносомик.

Так как в результате анэуплоидии происходит достаточно крупное изменение в составе хромосом (различие с нормальными огранизмами в целую хромосому), то она ведет к серьёзным изменениям строения всего организма. Анэуплоидия была хорошо изучена у дурмана. Это растение имеет 12 хромосом и известно 12 различных мутаций, которые можно легко распознать по внешнему виду растений. У животных этот вид мутаций изучен плохо, зато известны все случаи анэуплоидии у человека. Среди живорожденных встречаются трисомики и моносомики только по мелким хромосомам, так как анэуплоидия по крупным хромосомам ведет к столь большим изменениям в развитии организма, что приводит к самопроизвольным абортам на ранних стадиях беременности или к мертворождению.

Первая хромосомная болезнь у человека была обнаружена в 1959 году - синдром Дауна, названная по имени врача, первым описавшего ее в 1866 году. К характерным признакам синдрома Дауна относятся серьёзные отклонения в умственном развитии, коренастая фигура, толстая шея и характерные складки на лице под внутренними углами глаз. Синдром Дауна вызывается трисомией по 21-ой паре хромосом. Была замечена прямая зависимость частоты рождений детей с синдромом Дауна от возраста матери: до 30 лет вероятность рождения больного ребенка составляет 0,05%, в возрасте 30-35 лет - около 0,33%, в возрасте 40-44 лет - более 1% и затем более резко увеличивается до 12,5% в возрасте 45-47 лет. Такая же тенденция характерна для других видов анэуплоидии. Возможные другие трисомии у человека: трисомия по 13-ой паре хромосом приводит к образованию рудиментарных глаз, умственной отсталости, трисомия по 15-ой хромосоме вызывает волчью пасть (отсутствие твердого неба, следовательно, невозможность нормального дыхания. Если распознать болезнь до рождения, то ребенка можно спасти, проведя операцию после рождения), трисомия по 17-ой хромосоме вызывает “треугольный” рот у новорожденных, отсутствие шеи, дефекты ушей и сердца, трисомия по 18-ой хромосоме является причиной недоразвитой скелетной мускулатуры, челюстей, дегенерации ушей, неправильного положения указательного пальца и дефекта стопы, трисомия по 22-ой хромосоме вызывает шизофрению.

Анэуплоидия может возникать не только по аутосомам, но и по половым хромосомам. Самыми часто встречаемыми являются четыре синдрома. При синдроме Клайнфельтера (XXY) мужчина имеет вторичные женские половые признаки, бесплоден, иногда имеет молочные железы и обычно имеет низкий уровень умственного развития. Женщина синдромом Тернера (Х0) не имеет вторичных женских половых признаком и обладает низким ростом. Женщины, имеющие трисомию по 23-ей паре (ХХХ), внешне нормальны и плодовиты, но имеют умственную отсталость. Набор хромосом XYY у мужчин вызывает высокий рост и различную степень умственного развития, зато отличаются психопатическими чертами и склонностью к мелким правонарушениям.

2. Хромосомные мутации.

При хромосомных мутациях происходят перестройки генов в хромосоме. Различают следующие виды хромосомных мутаций:

1). Инверсия - поворот участка на 180о. При инверсии генетический материал не меняется, но зато меняется взаимное расположение генов, что имеет не малое значение при их действии: изменение взаимного расположения генов влияет на генотип. Значение взаиморасположения генов называется эффектом положения. Предположим, что в хромосоме имеет место следующая последовательность генов АБВГД, при инверсии этот участок может выглядеть следующим образом: АБГВД.

2). Транслокация - перенос участка с хромосомы на негомологичную ей хромосому. В данном случае количество генетического материала не изменяется, но тоже действует эффект положения.

3). Делеция - утрата участка хромосомы (промежуточного или концевого). Делеция может произойти в одной из гомологичных хромосом, тогда произошедшая мутация будет “прикрываться” геном гомологичной хромосомы. Делеция локусов на обеих гомологичных хромосомах чаще ведет к летальному исходу или к нарушениям в развитии. Первый случай делеции был установлен в Англии у женщины, имеющей целый ряд дефектов в развитии пола и в умственном развитии. Оказалось, что у нее в одной Х-хромосоме потеряно 2/3 вещества. Цитогенетики в Филадельфии открыли ещё один вид делеции - в 21-ой хромосоме. Потеря 1/3 генетического вещества в этой хромосоме приводит к повреждению белых клеток крови, что вызывает лейкемию. Также известны делеции, ведущие к возникновению синдрома кошачьего крика (крик ребенка похож на мяуканье кошки. Наблюдаются большие отклонения в умственном развитии) и синдектелия (сросшиеся пальцы).

4). Дубликация - удвоение участка хромосомы. Примером может служить случай с мухой дрозофилой. У нее имеется ген узости глаз. Если участок хромосомы, содержащей этот ген, удвоится, то муха будет иметь более узкие глаза. Встречались случаи утроения этого участка: глаза дрозофилы становились похожими на щелочку. В потомстве у узкоглазых были мухи с нормальными круглыми глазами, так как при кроссинговере лишний участок не попадал в хромосому.

3. Генные мутации.

Чаще всего происходят генные мутации. Генные мутации - результат изменения нуклеотидной последовательности молекулы ДНК на определенном участке хромосомы. Изменение последовательности нуклеотидов приводит к изменению последовательности аминокислот в полипептидной цепи, что изменяет функции белка. Существуют различные типы генных мутаций: дубликация, вставка, делеция, инверсия или замена основания (названия похожи на названия хромосомных мутаций, так как при генных мутациях происходят такие же процессы, но местами меняются и выпадают не участки хромосом, а нуклеотиды).

Генные мутации могут происходить в соматических клетках. В этом случае мутации приводят к образованию доброкачественных опухолей, которые не оказывают особого влияния на весь организм, или злокачественных опухолей.

Больший интерес представляют мутации в половых клетках, так как они наследуются. Большинство возникших мутаций не проявляются, так как они рецессивны и находятся в латентном (скрытом) состоянии. Такие мутации проявляются при переходе к гомозиготному состоянию. Но существуют и доминантные мутации (ретинобластома - злокачественная опухоль сетчатки глаза) и мутации, действующие по принципу неполного доминирования. Примером последней является серповидноклеточная анемия. Молекула гемоглобина человека состоит из четырех полипептидных цепей ( две ? и две ? цепи) и четыре группы гема. При серповидноклеточной анемии в триплете, кодирующем одну определенную аминокислоту из 146, входящей в ?-цепь, существует мутация, вследствие которой глутаминовая кислота заменена на валин в аминокислотной последовательности. Это приводит к тому, что при низких концентрациях кислорода такие молекулы кристаллизуются и становятся похожими на серп. Физиологический эффект мутации состоит в том, что снижается количество переносимого кислорода и наступает острая анемия. В гомозиготном состоянии мутация изменяет форму всех эритроцитов, а в гетерозиготном состоянии только 40% эритроцитов имеют аномальный гемоглобин.

Не все участки белковой молекулы одинаково влияют на ее функцию: существуют нейтральные участки, в которых замена одной аминокислоты на другую не приводит к изменениям функций, то есть мутации ДНК, определяющие аминокислоты этого участка белка, нейтральны и не могут быть зафиксированы по внешним признакам. Некоторые мутации ведут к замене аминокислоты в значимом участке белка, что приводит к изменениям в функциях белка, что, в свою очередь, влияет на признак организма. Есть же участки белка, замена в которых одной аминокислоты приводит к полной потерей белком его функций. Мутации ДНК, отвечающего за этот участок, приводит к летальному исходу.

Мутации могут быть прямыми и обратными, то есть замененный нуклеотид может быть обратно заменен на “правильный” нуклеотид. Но частота встречаемости обратных мутаций гораздо ниже, так как мутационная изменчивость подчинена законам случайности. Соответственно, возможность того, что мутация произойдет в том гене, в том самом месте, где уже произошла мутация, ничтожно мала.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.filosofia.ru/

Характеристики

Тип файла
Документ
Размер
237,46 Kb
Материал
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее