24906-1 (689133), страница 2

Файл №689133 24906-1 (Энергоноситель) 2 страница24906-1 (689133) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Преимущество углеводов перед полифосфатами со­стоит в том, что в них запасены не только энергия, но и "строительный материал". Расщепление угле­водов (гликолиз) дает помимо АТФ карбоновые кислоты, такие, как пировиноградная кислота, ко­торая может использоваться клеткой при биосинте­зе самых разнообразных соединений.

Описаны два основных типа гликолиза. В одном случае (спиртовое брожение) конечными продукта­ми расщепления углеводов оказываются этиловый спирт и углекислый газ — вещества, легко проника­ющие через мембрану клетки. Это обстоятельство имеет как преимущества (нет проблемы переполне­ния клетки конечными продуктами гликолиза), так и недостатки (трудно вернуться назад, к углеводу, если конечные продукты уже вышли из клетки и разбавились в океане внешней среды).

Указанный недостаток отсутствует во втором, сегодня гораздо более распространенном типе гли­колиза, когда конечным продуктом оказывается молочная или какая-либо другая карбоновая кисло­та. Молочная кислота не проникает через мембрану, не покидает пределы клетки и потому может быть использована клеткой для ресинтеза углеводов, когда возникает такая возможность. Неудачно лишь то, что молекулы молочной кислоты, образу­ясь, диссоциируют с образованием ионов лактата и водорода. Последние также не могут пройти через мембрану, остаются в клетке и закисляют ее содер­жимое. Закисление, если его не предотвратить,

должно привести к гибели клетки из-за кислотной денатурации белков. Решение этой проблемы опи­сано в следующем разделе.

ПРОТОННЫЕ КАНАЛЫ И Н+-АТФАЗА ПРЕДОТВРАЩАЮТ ЗАКИСЛЕНИЕ КЛЕТКИ ПРИ ГЛИКОЛИЗЕ

У современных клеток проблема проникнове­ния через клеточную мембрану веществ, которые сами по себе не могут сквозь нее пройти, решается с помощью встроенных в мембрану белков-перенос­чиков. В частности, известны белки — переносчики ионов Н+. Так называемый фактор F0 — белок, вхо­дящий в состав Н+ - АТФ - синтазы, действует как пе­реносчик Н+ или протонный канал.

Можно предположить, что у первичных гликолизирующих клеток фактор F0 функционировал при отсутствии фактора F1 второго компонента Н+ - АТФ - синтазы, разрешая ионам Н+, образую­щимся при гликолизе, покинуть пределы клетки. Тем самым предотвращалось закисление внутри­клеточной среды, которая оказывалась в равнове­сии по ионам Н+ с внеклеточной средой. Единственным ограничением гликолиза в такой ситуации должно было стать закисление внеклеточной сре­ды, что автоматически вело к закислению содержи­мого клетки. Снять данное ограничение можно бы­ло достроив белок - переносчик ионов Н+ (фактор F0) другим белком, называемым фактором F,. спо­собным использовать энергию АТФ для активной откачки из клетки ионов Н+ через фактор F0. Изве­стно, что Н+ - АТФ - синтаза (комплекс факторов F0 и fj), действуя в обратном направлении, способна ка­тализировать вместо синтеза АТФ пиролиз АТФ, сопряженный с откачкой ионов Н+. Этот процесс носит название Н+ - АТФазной реакции. Можно по­лагать, что с образованием Н+ - АТФазы завершилось формирование первичной клетки, использовавшей ультрафиолетовый свет в качестве источника энер­гии для жизнедеятельности (рис. 3).

ВОЗНИКНОВЕНИЕ ФОТОСИНТЕЗА, ИСПОЛЬЗУЮЩЕГО ВИДИМЫЙ СВЕТ

Бактериородопсиновый фотосинтез

Со временем все меньше ультрафиолетовых квантов достигало поверхности Земли. Причиной тому было образование озонового слоя атмосферы в условиях повышения в ней концентрации кислорода. Кислород образовывался, по-видимому, вследствие фотолиза паров воды под действием того же ультрафиолетового облучения. Чтобы выжить в новых условиях, древние клетки должны были переключиться с ультрафиолетового света на какой-либо иной источник энергии, все еще доступный для них в новых условиях. Таким источником стал, вероятно, видимый свет.

Рис. 3. Как первичная клетка могла избавиться от ионов НГ, образуемых гликолизом: а - облегчен­ная диффузия ионов Н+ посредством белка (фак­тора F0), образующего Непроводящий путь сквозь клеточную мембрану; б - комплекс факто­ров F0 и F, (Н+ - АТФаза) активно откачивает из клетки ионы Н+ за счет гидролиза АТФ. Мембран­ные липиды показаны горизонтальной штрихов­кой, белки не заштрихованы

Другой сценарий эволюции мог бы состоять в том, что возникновение фотосинтеза, использую­щего видимый свет, произошло еще до помутнения атмосферы, а именно при проникновении жизни в более глубокие уровни океана, лишенные ультра­фиолета. Замена опасного ультрафиолетового излу­чения на безопасный видимый свет могла бы быть тем признаком, который лег в основу естественного отбора на данном этапе эволюции. В рамках этой концепции создание озонового слоя имеет биоген­ную природу, явившись результатом фотолиза воды системой хлорофилльного фотосинтеза зеленых бактерий и цианобактерий.

Новый фотосинтез должен был, как и прежде, образовывать АТФ, который к тому времени уже прочно занял место в центре метаболической кар­ты, выполняя роль "конвертируемой энергетической валюты" клетки. Однако аденин уже не мог играть роль улавливающей свет антенны, так как его мак­симум поглощения находится в ультрафиолетовой, а не в видимой области спектра. До нас дошли два типа фотосинтетических устройств, использующих видимый свет. В качестве антенны в одном из них служит хлорофилл, а в другом — производное вита­мина А, ретиналь, соединение с особым белком, названным бактериородопсином. Хлорофилл об­наружен у зеленых растений и почти у всех фотосинтезирующих бактерий. Исключение составляет одна группа соле- и теплоустойчивых архебактерий, содержащих бактериородопсин. Тем не менее именно бактериородопсин выглядит как эволюционно первичный механизм запасания клеткой энергии видимого света.

Бактериородопсин — светозависимый протон­ный насос. Он способен активно откачивать ионы Н+ из клетки за счет энергии видимого света, погло­щенного ретиналевой частью его молекулы. В ре­зультате световая энергия превращается в трансмем­бранную разность электрохимических потенциалов ионов Н+ (сокращенно протонный потенциал, или ∆ Н+). Для бактерий ∆ Н+ - это свободная энергия ионов Н+, откачанных из клетки во внешнюю среду. Ионы Н+ как бы стремятся вернуться в клетку, где их стало меньше и где возник недостаток положи­тельных электрических зарядов из-за действия бактериородопсинового Н+ - насоса. Энергия света, за­пасенная таким образом в виде ∆ Н-, освободится, если позволить ионам Н+ войти обратно в клетку. У микробов, имеющих бактериородопсин, ионы Н+ входят через комплекс факторов F0 и F1 таким обра­зом, что освобождающаяся энергия используется для синтеза АТФ. Нетрудно представить себе, как возник фотосинтез АТФ, катализируемый бактери­ородопсином и комплексом F0F1 С появлением бактериородопсина клетка научилась создавать ДДН+ за счет видимого света, а эта ∆ Н+, образовав­шись, просто развернула вспять Н+ - АТФазную ре­акцию, существовавшую ранее в качестве механиз­ма откачки из клетки гликолитических ионов Н+. Так комплекс F0F1 мог превратиться из АТФазы в АТФ-синтетазу (рис. 4).

Устройство бактериородопсина намного проще системы хлорофилльного фотосинтеза. Белковая часть бактериородопсина представляет собой одну полипептидную цепь средней длины, которая не содержит других коферментов и простетических групп, кроме ретиналя. Бактериородопсин чрезвы­чайно устойчив: без потери активности его можно кипятить в автоклаве при + 130°С, изменять содер­жание NaCl в омывающем мембрану растворе от ну­ля до насыщения, в широких пределах менять рН этого раствора. Более того, можно удалить выступа­ющие из мембраны концевые участки полипептидной цепи и даже расщепить эту цепь в одном месте по середине без ущерба для активности насоса. В то же время эффективность бактериородопсина как преобразователя энергии сравнительно низка: всего 20% энергии светового кванта превращается в ∆ Н+. При этом на один поглощенный квант через мембрану переносится один ион Н+.

Рис. 4. Бактериородопсиновый фотосинтез со-лелюбивых архебактерий. Ионы 1-Г откачиваются из клетки бактериородопсином - белком, содер­жащим ретиналь в качестве хромофора, то есть группировки, поглощающей видимый свет. Ионы Н* возвращаются в клетку, двигаясь "под гору" че­рез Н+ -АТФазный комплекс F0F,. При этом оказы­вается, что Н+ - АТФаза катализирует обратную ре­акцию, то есть синтез АТФ, а не его гидролиз

Хлорофилльный фотосинтез

Хлорофилльный фотосинтез отличается от бактериородопсинового большей эффективностью ис­пользования светового кванта. Он устроен таким образом, что либо на каждый квант переносится че­рез мембрану не один, а два иона Н+, либо помимо транспорта Н+ происходит запасание энергии в форме углеводов, синтезируемых из С02 и Н2О. Вот почему бактериородопсиновый фотосинтез был от­теснен эволюцией с авансцены. Он сохранился только у бактерий, живущих в экстремальных усло­виях, где более сложный и менее устойчивый хлорофилльный фотосинтез, по-видимому, просто не мо­жет существовать.

Хлорофилльный фотосинтез катализируется фер­ментной системой, включающей несколько белков. Квант света поглощается хлорофиллом, молекула которого, перейдя в возбужденное состояние, пе­редает один из своих электронов в фотосинтетиче­скую цепь переноса электронов. Эта цепь пред­ставляет собой последовательность окислительно-восстановительных ферментов и коферментов, на­ходящихся во внутренней мембране бактерий или хлоропластов растений, где локализованы также белки, связанные с хлорофиллом. Компоненты це­пи содержат, как правило, ионы металлов с пере­менной валентностью (железо, медь, реже марганец или никель). При этом железо может входить в состав тема (в таком случае белки называются цитохромами). Большую роль играют также негемовые железопротеиды, где ион железа связан с белком че­рез серу цистеина или реже азот гистидина. Помимо ионов металлов роль переносчиков электронов иг­рают производные хинонов, такие, как убихинон, пластохинон и витамины группы К.

Перенос по цепи электрона, отнятого от возбуж­денного хлорофилла, завершается по-разному в за­висимости от типа фотосинтеза. У зеленых бакте­рий, использующих комплекс хлорофилла и белка, называемый фотосистемой 1 (рис. 5, а), продуктом оказывается НАДН, то есть восстановленная форма НАД+. Восстанавливаясь, то есть присоединяя два электрона, НАД+ связывает также один Н+. В даль­нейшем образованный таким образом НАДН окис­ляется, передавая свой водород на различные субст­раты биосинтезов.

Что касается хлорофилла, окисленного цепью, то у зеленых серных бактерий он получит недостаю­щий электрон от сероводорода (H,S). В результате образуются также элементарная сера и ион Н+. Бе­лок, окисляющий H2S, расположен на внешней поверхности бактериальной мембраны, а белок, восстанавливающий НАД+, — на внутренней ее по­верхности. Вот почему оказывается, что запускае­мый светом перенос электронов от H,S к НАД"1" об­разует ионы Н+ снаружи и потребляет их внутри бактерии. При этом внутренний объем клетки заря­жается отрицательно относительно внешнего. Тем самым создается ∆ Н+, которая потребляется Н+ - АТФ-синтазой (комплексом факторов F0 и F,), об­разующей АТФ при переносе ионов Н "под гору", то есть снаружи внутрь.

Другой тип бактериального фотосинтеза обна­ружен у пурпурных бактерий (рис. 5. б). Здесь дей­ствует набор ферментов, отличающихся от фер­ментного комплекса зеленых бактерий. Это несущая хлорофилл фотосистема 2 и комплекс III. Как и в предыдущем случае, процесс начинается с поглощения кванта хлорофиллом. Первоначатьно перенос электронов происходит по фотосистеме 2.

Затем вступает комплекс III, способный транспор­тировать электроны сопряженно с откачкой ионов Н+ из бактерии. Процесс завершается возвращени­ем электрона с комплекса III на хлорофилл. Что ка­сается ионов Н+, то они возвращаются в клетку че­рез Н+-АТФ-синтазу, образуя АТФ.

Характеристики

Тип файла
Документ
Размер
14,89 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее