25380 (686822), страница 5

Файл №686822 25380 (Гидродинамические методы исследования скважин на Приразломном месторождении) 5 страница25380 (686822) страница 52016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Определяем радиус призабойной зоны:

(3.11)

t - время перехода во II зону.


3.2.4 Определение коэффициента продуктивности методом прослеживания уровня (по механизированному фонду скважин)

При установившемся режиме работы скважины фильтрация жидкости в однородном пласте при линейном законе определяется формулой Дюпии:

(3.12)

где

Q - дебит скважины в пластовых условиях (см3/сек)

к - проницаемость пласта (д)

h - мощность пласта (см)

вязкость жидкости в пластовых условиях (спз)

Рк и Рс - соответственно давление на контуре пласта и на забое скважины (кг с/см)

Rк и rс - соответственно радиус контура питания и радиус скважины

Из уравнения (1) найдём коэффициент продуктивности скважины К:

(3.13)

Прослеживание уровня основано на методе последовательной смены стационарных состояний.

Предлагается, что радиус влияния скважин постоянен, а также, что жидкость несжимаема и возмущение у стенки скважины мгновенно распространяется на расстояние постоянного радиуса, равного радиусу влияния скважины.

Тогда, если предположить в каждый момент приток в скважину установившимся, то найдём:

(3.14)

где

Рк - пластовое давление, Рс (t) - забойное давление. Если скважина не переливающая, то

(3.15)

Приравнивая (1) и (2) и выражая Р в (1) через уровень, получим:

(3.16)

где

где Нк и Нс (t) - соответственно статический и динамический уровни жидкости в скважине

q - плотность жидкости в пластовых условиях

F - площадь поперечного сечения колонны

Интегрируя (3), найдём

(3.17)

(3.17) - уравнение прямой в координатах:

, или (3.18)

где

НСО - уровень жидкости в скважине при установившемся состоянии. По углу наклона этой прямой к оси абсцисс tg найдём:

(3.19)

Составляя (3.19) и (3.16), найдём коэффициент продуктивности:

(3.20)

3.2.5 Обработка данных прослеживания уровня и построение графиков

По замерам динамического уровня жидкости в скважине строится график изменения уровня Н, t.

После замера восстановления давления в скважине, на устье зафиксировано избыточное буферное давление РУ;

Н= Н+НСТ. (3.21)

(3.22)

- удельный вес жидкости в пластовых условиях.

Обрабатывая кривую прослеживания уровня, составляем таблицу (3.2): расчёт параметров

T, сек

Н, м

Н=Н+НСТ

Н, см

Ln Н

Примечан.

0

1800

3600

Строится график: ln H, t сек:

(3.23)

F - площадь поперечного сечения колонны, см

12) - толщина стенки колонны

j - удельный вес жидкости в пластовых условиях

d - внешний диаметр НКТ.

Если дан внутренний диаметр НКТ, учитывать 2 толщины стенки НКТ (2-2,5 милиметров).

Пример:

(3.24)

перевести в

перевести в т/сут атм=1,27 т/сут атм.

j-удельный вес жидкости в поверхностных условиях.

3.3 Гидродинамические исследования при вторичном вскрытие пласта

Вторичное вскрытие пласта и его влияния на К продуктивности скважины.

Поскольку приразломное месторождение осваивается 1986 год то вторичное вскрытие пластов происходило с теми возможностями и разработкой, которые существовали на тот и последующие периоды.

ЗПКСЛУ-80

Заряда перфорационные кумулятивные в стеклянной оболочке Ленточная установка - 80 месяцев. Их данные:


3.4 Приток жидкости к несовершенным скважинам при выполнении закон Дарси

Приток жидкости к несовершенной скважине даже в горизонтальном однородном пласте постоянной толщины перестаёт быть плоскорадиальным. Строгое математическое решение задачи о притоке жидкости к несовершенной скважине в пластах конечной толщины представляет большие (а в некоторых случаях непреодолимые) трудности.

Приведём здесь без выводов и доказательств наиболее распространённые окончательные расчётные формулы притока жидкости к различного типа несовершенным скважинам.

Прежде всего допустим, что скважина вскрыла кровлю пласта неограниченной толщины и при этом её забой имеет форму полусферы.

(3.25)

где и - приведённые давления.

Если скважина вскрыла пласт неограниченной толщины на глубину b, то её дебит можно найти по формуле Н.К. Гиринского:

(3.26)

Задача о притоке жидкости к несовершенной по степени вскрытия пласта скважине в пласте конечной толщины h исследовалась М. Маскетом. Вдоль оси скважины на вскрытой части длиной b он располагал воображаемую линию, поглощающую жидкость, каждый элемент которой dz является стоком. Интенсивность расходов q, т.е. дебитов, приходящихся на единицу длины поглощающей линии, подбиралась различной в разных её точках для выполнения нужных граничных условий.

Необходимо получить решение, удовлетворяющее следующим граничным условиям: кровля и подошва пласта непроницаемы; цилиндрическая поверхность радиусом r =R является эквипотенциалью Ф =Ф; поверхность забоя скважины также является эквипотенциалью Ф =Ф.

Выполнение указанных граничных условий потребовало отображения элементарных стоков qdz относительно кровли и подошвы пласта бесчисленное множество раз.

Подбирая интенсивность расходов q и используя метод суперпозиции действительных и отображённых стоков, М. Маскет получил следующую формулу для дебита гидродинамически несовершённой по степени вскрытия пласта скважины:

(3.27)

где

(3.28)

а функция имеет следующее аналитическое выражение:

(3.29)

Здесь

- интеграл Эйлера второго рода, называемый гамма - функцией, для которой имеются таблицы в математических справочниках.

Нетрудно заметить, что если , то есть пласт вскрыт на всю толщину, формула (3.28) переходит в формулу Дюпюи для плоскорадиального потока.

Иногда для расчёта дебита несовершенной по степени вскрытия пласта скважины используется более простая формула, чем (3.28) М. Маскета, предложенная И. Козени:

(3.30)

Дебит несовершенной скважины удобно изучать, сравнивая её дебит Q с дебитом совершенной скважины Qсов, находящейся в тех же условиях, что и данная несовершенная скважина. Гидродинамическое несовершенство скважины характеризуется коэффициентом совершенства скважины .

Широкое распространение получил метод расчёта дебитов несовершенных скважин, основанный на электрогидродинамической аналогии фильтрационных процессов.

Электрическое моделирование осуществляется следующим образом. Ванна заполняется электролитом. В электролит погружается один кольцевой электрод, моделирующий контур питания. В центре ванны погружается электрод на заданную глубину, соответствующую степени вскрытия пласта скважиной. К обоим электродам подводится разность потенциалов, являющаяся аналогом перепада давления, сила тока служит аналогом дебита скважины. Дебит гидродинамически несовершенной скважины подсчитываются по формуле

(3.31)

где С=С12 - дополнительное фильтрационное сопротивление, вызванное несовершенством скважины по степени вскрытия пласта (С1) и характеру вскрытия (С2).

Измеряя разность потенциалов и силу тока, можно подсчитать сопротивление по закону Ома, сделать пересчёт на фильтрационное сопротивление и определить дополнительное фильтрационное сопротивление.

Такие экспериментальные исследования были проведены В.И. Щуровым. Им определены дополнительные фильтрационные сопротивления С и С для различных видов несовершенства скважин и построены графики зависимости С от параметров и (Рис.6.2) (см. Приложение), а также С от трёх параметров и (Рис.6.3) (см. Приложение), где n - число перфорационных отверстий на 1 м вскрытия толщины пласта; - диаметр скважины; - глубина проникновения пуль в породу; - диаметр отверстий.

Выражение дополнительного фильтрационного сопротивления получено И.А. Чарным с использованием формулы Маскета (3.28) в виде

(3.32)

где определяется по формуле (3.30) или по графику

А.М. Пирвердян получил для коэффициента следующее выражение:

(3.33)

Сравнив дебиты совершенной скважины (формула Дюпюи) и несовершенной скважины (3.31), получим выражение коэффициента совершенной скважины в следующем виде:

(3.34)

Иногда бывает удобно ввести понятие о приведённом радиусе скважин , т.е. радиусе такой совершенной скважины, дебит которой равен дебиту данной несовершенной скважины:

(3.35)

Тогда (3.31) можно заменить следующей формулой:

(3.36)

И.А. Чарный предложил следующий способ определения дебита скважины, несовершенной по степени вскрытия, если величина вскрытия пласта b мала . Область движения условно разбивается на две зоны (Рис.6.4). Первая - между контуром питания и радиусом , равным или большим толщины пласта , в этой зоне движение можно считать плоскорадиальным. Вторая - между стенкой скважины и цилиндрической поверхностью , где движение будет существенно пространственным. Обозначим потенциал при r =R через Ф. Тогда для зоны можно записать формулу Дюпюи:

(3.37)

Для зоны , считая здесь приближённо движение радиально - сферическим между полусферами радиусами r и R, имеем:

(3.38)

Из формул (3.31) и (3.33) по правилу производных пропорций получается формула для дебита скважины:

(3.39)

Приняв R =1,5h, получим окончательно формулу для дебита несовершенной скважины, вскрывшей пласт на малую глубину:

Характеристики

Тип файла
Документ
Размер
2,37 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6353
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее