25287 (686785), страница 7
Текст из файла (страница 7)
Fr = 162 / (13,42 * 0,43 * 9,81) = 2,27;
Fr > Frкр (Frкр = 12,71).
3.5 Устойчивость бетонной плотины
На практике расчёт устойчивости плотины ведут приближённым способом, предполагая, что грунт под плотиной перемещается вместе с ней, как бы сдвигаясь по некоторой криволинейной поверхности, принимаемой круговой.
Пусть на плотину и выделенный круговой сегмент грунта основания AОB действуют следующие силы.
1) Равнодействующая всех вертикальных сил , переносимая по линии её действия до встречи с дугой сегмента и раскладываемая на составляющие: радиальную
и касательную
;
,
где - вес плотины
,
- площадь поперечного сечения плотины, которая определяется по рис.
.
– объёмный вес бетона.
.
- угол между направлением силы
и вертикальной прямой, замеряемый по чертежу.
Рассчитаем составляющие равнодействующей вертикальных сил
;
.
2) Равнодействующая всех горизонтальных сил , перенесённая в плоскость подошвы, с составляющими
;
,
где - сила гидростатического давления
,
– объёмный вес воды.
.
– глубина воды перед плотиной.
.
– угол между направлением силы
и вертикальной прямой, замеряемый по чертежу.
Рассчитываем составляющие равнодействующей вертикальных сил
;
.
3) Вес сегмента грунта
,
где – объёмный вес грунта (взвешенного в воде).
.
– угол АОВ, замеряемый по чертежу.
.
– радиус кругового сегмента грунта основания.
.
.
4) Фильтрационное давление в основании
,
где - площадь сегмента AOB:
.
- градиент напора фильтрационного потока
,
где - падение напора.
1 = 2,7 м;.
2 = 1,5 м
- длина дуги.
1 = 4 м;
2 = 13 м
I1 = 2,7 / 4 = 0,67 м; I2 = 1,5 / 13 = 0,11 м
I1 > I2
1 = 137,4 * 1 *0,67 = 92,05 т;
2 = 137,4 * 1 * 0,11 = 15,11 т
5) Силы трения в грунте, действующие нормально к направлениям сил
,
и
(по касательным к дуге сегмента) и равные соответственно:
,
,
.
где - угол внутреннего трения грунта.
.
;
;
.
6) Сила сцепления между частицами грунта
,
где - длина кривой АВ с радиусом R и центральным углом
.
.
– удельное сцепление грунта.
.
.
Далее рассчитываем коэффициент устойчивости , представляющий собой отношение моментов относительно центра кривой сегмента АОВ сил, сопротивляющихся сдвигу, к моменту сил, сдвигающих массив грунта:
.
.
Отсюда можно сделать вывод, что сдвиг плотины по рассматриваемой поверхности сдвига невозможен, т. к. значение превышает минимальное допустимое
.
3.6 Окончательное проектное решение
При проектировании тела бетонной плотины были определены следующие её параметры: высота плотины , ширина каждого из четырёх пролётов водосливной грани
, толщина быков
.
Водосливная грань плотины сопрягается с нижним бьефом с помощью водобойного колодца, глубина которого и длина
. За водобойным колодцем устанавливаем рисберму, после которой вода попадает в канал, соединяющий её с рекой.
Бетонная плотина смыкается с телом грунтовой плотины при помощи подпорных стенок. Для обеспечения устойчивости стенок на сдвиг устраиваем фундаментную подушку в сторону берега. Конструируем подпорные стенки из железобетона.
4. Конструирование плоского затвора
Из всего многообразия видов поверхностных затворов выбираем плоские затворы, которые представляют собой плоскую ригельную конструкцию, поступательно перемещающуюся в пазах на скользящих или колесных опорах и передающую давление воды на быки. Воду пропускают с одной стороны от подвижной конструкции – из – под затвора. Плоскими затворами перекрывают отверстия пролетом до 30 – 40 м при напоре до 12 –15 м.
4.1 Описание конструкций затвора
У небольших плоских затворов, устанавливаемых на сетевых сооружениях и в составе затворов мостовых и с поворотными фермами, пролетные строения выполняют по типовым проектам из стального 6‑мм листа с подкреплением уголками и полосами и из шпунтованных досок на шпонках. Специальных уплотнений и опорно-ходовых частей эти затворы не имеют. У крупных затворов пролетные строения содержат более или менее явно выраженные элементы: ригели, обшивку, балочную клетку, диафрагмы, опорно-концевые стойки, подъемно – весовые фермы.
Ригели работают как статически определимые двухопорные балки. Высота их определяется: 1) допустимым относительным прогибом в пролете (1/1000 для затворов с верхним горизонтальным уплотнением, 1/600 для прочих основных затворов, 1/500 для аварийных, 1/400 для ремонтных затворов); 2) допустимыми нормальными напряжениями от изгиба в поясах ригелей посередине пролета; 3) допустимыми касательными напряжениями от перерезывающих сил в стенках ригелей у опор. У большепролетных поверхностных затворов высота ригелей лимитируется чаще всего первым условием и составляет 1/7 – 1/9 пролета. У опор она может быть уменьшена на 40 – 60% с ориентацией на третье условие.
Ригели конструируют по общим правилам проектирования металлических конструкций. В последнее время предпочитают сплошноступенчатые ригели и ригели из прокатных профилей. Они технологичнее, обеспечивают высокую живучесть при случайных повреждениях, большую устойчивость и выносливость конструкции, их легче очищать и защищать от коррозии. Ригели – фермы применяют лишь для поверхностных затворов очень большого пролета (более 20 м). В сплошноступенчатых конструкциях обязательно устройство отверстий в стенках для стока воды.
Основное правило расположения ригелей по высоте – их равнонагруженность. В связи с этим у поверхностных затворов (имеющих обычно два ригеля) их располагают в нижней части на равном расстоянии от точки приложения равнодействующей сил давления воды. У низконапорных глубинных затворов неравномерность расстановки ригелей менее заметна. У средне- и высоконапорных глубинных затворов ригели расставляют равномерно. Расстояние между их растянутыми поясами принимают не менее 450 – 500 мм из условия возможности ведения сварки, очистки и окраски.
Обшивку поверхностных затворов выполняют из листовой стали толщиной 8 – 20 мм, глубинных – 10 – 60 мм. При шаге ригелей более 50 – 60 мм толщин обшивки ее подкрепляют балочной клеткой из стоек и обрешетин, передающих нагрузку на ригели и обеспечивающих устойчивость обшивки. Обычно необходимость в таком подкреплении возникает у поверхностных затворов. Стойки могут быть разрезными на ригелях или неразрезными.
4.2 Расчетно-графическая схема
Высота перекрываемого отверстия м, тогда высота затвора принимается с учетом сухого запаса
м,
м, а ширина перекрываемого отверстия ℓ = 3,0 м. Расчетный пролет затвора определяется как L= ℓ + (0,2…0,25) = 3,0+ 0,2 = 3,2 м.
Принимаем двухригельный колесный металлический затвор как наиболее экономичный и широко распространенный из-за простоты конструкции, точности передачи давления воды на опорно-ходовые части и легкости изготовления. В двухригельных затворах ригели располагаем на равных расстояниях от направления равнодействующей гидростатического давления. При соблюдении этого условия ригели получаются одинакового сечения.
Расчет ригелей ведём на равномерно распределённую нагрузку на 1 м длины при учете силы гидростатического давления воды и силы собственного веса ригеля по формуле:
, т
где Н – напор воды, Н = 1 м;
– удельный вес воды принимаем равной 1т;
q1 – равномерно распределенная нагрузка на 1 м длины.
Для ригелей используем прокатные профили двутаврового сечения. Принимаем предварительно двутавр №12. По таблице сортамента прокатных профилей определяем параметры двутавра: площадь поперечного сечения ; вес 1 п. м
; момент сопротивления
; момент инерции
; толщина стенки
.
Собственный вес 1 п. м ригеля .
Отсюда можно определить суммарную нагрузку:
.
Максимальный изгибающий момент:
,
где - расчётный пролёт затвора.
Высоту ригеля определим по формуле:
,
где т/м2 – расчетное напряжение для стали.
Получаем высоту ригеля:
,
что соответствует предварительно принятой высоте ригеля из двутавра №12.
Далее подобранное сечение ригеля проверяем на прогиб. Прогиб ригеля определяем по формуле:
,
где - сопротивление прогибу.
.
.
Рассчитаем относительный прогиб :
.
Полученная величина не должна превышать нормативного значения:
.
Условие выполнено, т. к. рассчитанное значение не превышает нормативное.
Таким образом, окончательно можно принять прокатный профиль двутаврового сечения №12.
4.3 Окончательное проектное решение
На основании проведённых выше расчётов окончательно проектируем колёсный металлический затвор.