25015 (686695), страница 2
Текст из файла (страница 2)
Сверху стол защищен оградой 8. Быстроходный ведущий вал 10 расположен горизонтально на подшипниках 11, воспринимающих радиальные и горизонтальные нагрузки. Вал 10 приводится: во вращение от цепной звездочки 12 или с помощью вилки карданного вала, расположенной на конце вала. Ротор снабжен стопором 9, при включении которого вращение стола становится невозможным. Фиксация стола ротора необходима при СПО и бурении забойными двигателями для восприятия реактивного
момента.
Привод ротора в буровых установках с расположением лебедки на полу буровой осуществляется цепной трансмиссией от лебедки или от КПП карданной передачей, при установке лебедки ниже пола буровой — дополнительной трансмиссией от лебедки или индивидуальным приводом от электродвигателя постоянного тока (рис. V.2), располагаемой под полом буровой. Такая конструкция обеспечивает свободное пространство для работы персонала буровой бригады.
КОНСТРУКЦИИ РОТОРОВ И ИХ ЭЛЕМЕНТОВ
Ротор Р-560 (рис. V.3) состоит из следующих основных сборок и элементов. Станина 7— основной элемент ротора. Обычно она представляет собой стальную отливку коробчатой формы, внутри которой смонтированы основные сборки и детали. Внутренняя полая часть станины — масляная ванна для смазки конической зубчатой пары и подшипников опор стола ротора и приводного вала.
Стол ротора 2 — основная вращающаяся часть, приводящая во вращение через разъемные вкладыши 4 и зажимы 5 ведущую трубу и соединенную с ней спущенную в скважину бурильную колонну. Стол ротора монтируется на двух шаровых опорах — главной 3 и вспомогательной 8. Главная опора 3 воспринимает динамические циклически действующие нагрузки — радиальную от передаваемого крутящего момента и осевые от трения ведущей трубы о зажимы 5 ротора при подаче колонны и от веса стола ротора, а также статическую нагрузку от веса колонн труб и других элементов при установке их на стол ротора.
В спомогательная опора 8 стола служит для восприятия радиальных нагрузок от зубчатой передачи и осевых ударов при бурении или подъеме колонны. Периферийный зазор между станиной 7 и столом 2 ротора выполнен в виде лабиринта, предупреждающего проникновение бурового раствора и грязи внутрь станины и выбрасывание смазки из ротора при вращении стола. Сверху стол ротора закрыт ограждением /, служащим для установки на нем элеваторов и другого оборудования при СПО и защиты операторов.
Горизонтальный приводной вал 6 выполняется обычно в виде отдельной сборки, в которой вал с ведущей конической шестерней, насаженной на нем, монтируется на роликоподшипниках во втулке. Сдвоенный радиально-упорный подшипник, воспринимающий радиальные и осевые нагрузки от зубчатой передачи, устанавливается рядом с конической шестерней. Вторая опора вала — цилиндрический роликоподшипник. На внешнем конце вала монтируется либо цепная звездочка 9 при приводе ротора цепной передачей от лебедки, либо шарнир карданного вала.
Разъемные вкладыши 4, состоящие из двух половин, устанавливают в проходное отверстие ротора, верхняя часть которого снабжена квадратной выемкой. Верхняя часть вкладышей также имеет квадратную форму, в которую входят выступы верхней части зажимов 5 ведущей трубы или роликового зажима при бурении. При СПО в отверстие вкладышей вставляют конусную втулку для клинового захвата. При бурении зажимы 5 или роликовые зажимы закрепляют болтами, оставляют на ведущей трубе и вместе с ней отпускают в отверстие вкладышей 4.
Стопорное устройство 10 служит для фиксации стола ротора. Рукоятка управления стопорным устройством расположена в углублении верхней ограды ротора. В углублении она защищена от повреждений и, кроме того, не мешает работать. При переводе рукоятки в рабочее положение выдвигается упор, входящий в одну из специальных прорезей на наружной поверхности стола, и препятствует вращению.
Для облегчения труда рабочих и ускорения СПО роторы комплектуют пневматическими клиновыми захватами, для чего на роторе предусмотрен кронштейн, к которому присоединяется механизм подъема и опускания в отверстие ротора клиньев.
Диаметр отверстия в столе ротора и максимальная статическая нагрузка на стол ротора —основные классификационные параметры. Они определяют максимальный диаметр долота и максимальные диаметр и вес обсадной колонны, которая может быть спущена в скважину.
Основные характеристики роторов приведены в табл. V.I.
Для обеспечения взаимозаменяемости внутренние размеры роторов и вкладышей и наружные размеры вкладышей стандартизованы. Также стандартизованы длина и диаметр конца приводного вала ротора и расстояние от оси отверстия стола до плоскости первого ряда зубьев приводной звездочки, обеспечивающее возможность применения ротора на любой буровой установке.
БУРОВЫЕ НАСОСЫ И ОБОРУДОВАНИЕ ЦИРКУЛЯЦИОННОЙ СИСТЕМЫ
ФУНКЦИИ И СХЕМА ЦИРКУЛЯЦИОННОЙ СИСТЕМЫ
Буровые насосы и циркуляционная система выполняют следующие функции:
нагнетание бурового раствора в бурильную колонну для обеспечения циркуляции в скважине в процессе бурения и эффективной очистки забоя и долота от выбуренной породы, промывки, ликвидации аварий, создания скорости подъема раствора в затрубном пространстве, достаточной для выноса породы на поверхность;
подвод к долоту гидравлической мощности, обеспечивающей высокую скорость истечения (до 180 м/с) раствора из его насадок для частичного разрушения породы и очистки забоя от выбуренных частиц;
подвод энергии к гидравлическому забойному двигателю.
Н а рис. VII. 1 показаны схема циркуляции бурового раствора и примерное распределение потерь напора в отдельных элементах циркуляционной системы скважины глубиной 3000 м при бурении роторным способом.
В процессе бурения в большинстве случаев раствор циркулирует по замкнутому контуру. Из резервуаров 13 очищенный и подготовленный раствор поступает в подпорные насосы 14, которые подают его в буровые насосы /. Последние перекачивают раствор под высоким давлением (до 30 МПа) по нагнетательной линии, через стояк 2, гибкий рукав 3, вертлюг 4, ведущую трубу 5 к устью скважины 6. Часть давления насосов при этом расходуется на преодоление сопротивлений в наземной системе. Далее буровой раствор проходит по бурильной колонне 7 (бурильным трубам, УБТ и забойному двигателю 9) к долоту 10. На этом пути давление раствора снижается вследствие затрат энергии на преодоление гидравлических сопротивлений.
Затем буровой раствор вследствие разности давлений внутри бурильных труб и на забое скважины с большой скоростью выходит из насадок долота, очищая забой и долото от выбуренной породы. Оставшаяся часть энергии раствора затрачивается на подъем выбуренной породы и преодоление сопротивлений в затрубном кольцевом пространстве 8 . П однятый на поверхность к устью 6 отработанный раствор проходит по растворопроводу 11 в блок очистки 12, где из него удаляются в амбар 15 частицы выбуренной породы, песок, ил, газ и другие примеси, поступает в резервуары 13 с устройствами 16 для восстановления его параметров и снова направляется в подпорные насосы.
Нагнетательная линия состоит из трубопровода высокого давления, по которому раствор подается от насосов / к стояку 2 и гибкому рукаву 3, соединяющему стояк 2 с вертлюгом 4. Напорная линия оборудуется задвижками и контрольно-измерительной аппаратурой. Для работы в районах с холодным климатом предусматривается система обогрева трубопроводов.
Сливная система оборудуется устройствами для очистки и приготовления бурового раствора, резервуарами, всасывающей линией, фильтрами, нагнетательными центробежными насосами, задвижками и емкостями для хранения раствора.
ВЕРТЛЮГИ И БУРОВЫЕ РУКАВА
НАЗНАЧЕНИЕ И СХЕМЫ
Вертлюг — промежуточное звено между поступательно перемещающимся талевым блоком с крюком, буровым рукавом и вращающейся бурильной колонной, которая при помощи замковой резьбы соединяется через ведущую трубу со стволом вертлюга. Для обеспечения подачи бурового раствора или газа перемещающийся вертлюг соединен с напорной линией при помощи гибкого бурового рукава, один конец которого крепится к отводу вертлюга, а второй — к стояку на высоте, несколько большей половины его длины.
Н а рис. VIII. 1 показана схема расположения вертлюга в буровой при бурении.
Вертлюг обеспечивает возможность свободного вращения бурильной колонны при невращающихся корпусе и талевой системе. Он подвешен на ее крюке и выполняет функции сальника для подачи внутрь вращающейся колонны бурового раствора, закачиваемого насосами по гибкому рукаву.
На рис. VIII.2 показана принципиальная схема вертлюга для бурения глубоких скважин. Основная вращающаяся его деталь — полый ствол 1, воспринимающий вес бурильной колонны. Ствол, смонтирован в корпусе 3 на радиальных 4 и 7 и упорных 5 и 6 подшипниках, снабжен фланцем, передающим вес колонны через главную опору 5 на корпус 3, подвешенный к крюку на штропе 12. Опоры ствола фиксируют его положение в корпусе, препятствуют осевым, вертикальным и радиальным перемещениям и обеспечивают устойчивое положение и легкость вращения.
Вес корпуса вертлюга со шлангом, осевые толчки и удары колонны снизу вверх воспринимаются вспомогательной опорой 6. Ствол вертлюга — ведомый элемент системы. При принятом в бурении нормальном направлении вращения бурильной колонны (по часовой стрелке, если смотреть сверху на ротор) ствол и все детали, связанные с ним, во избежание самоотвинчивания имеют левые резьбы. Штроп 12 крепится к корпусу на осях 16, смонтированных в приливах корпуса. Приливы имеют форму карманов, которые ограничивают угол поворота штропа ( — 40°) для установки его в положение, удобное для захвата крюком, когда вертлюг с ведущей трубой находится в шурфе.
К крышке корпуса 15 прикреплен отвод 13, к которому присоединяется буровой рукав 14. Буровой раствор поступает из рукава через отвод в присоединенную к нему напорную трубу 9, из которой он попадает во внутренний канал ствола вертлюга. Зазор между корпусом напорного сальника 10 и напорной трубой 9 уплотнен сальником 11, обеспечивающим герметичность при больших рабочих давлениях бурового раствора.
Напорный сальник 11 во время роторного бурения эксплуатируется в тяжелых условиях, срок его службы (50—100 ч) во много раз меньше, чем остальных деталей вертлюга, поэтому он выполняется быстросменным. В верхней и нижней частях корпуса вертлюга для уплотнения зазора между корпусом и вращающимся стволом устанавливают самоуплотняющиеся манжетные сальники 2 и 8, которые предохраняют от вытекания масла из корпуса и попадания в него снаружи влаги и грязи.
В вертлюгах есть устройства для заливки, спуска масла и контроля его уровня, а также сапун для уравновешивания с атмосферным давлением паров внутри корпуса, создающегося при нагреве в процессе работы. Это устройство не пропускает масло при транспортировке вертлюга в горизонтальном положении.
Типоразмер вертлюга определяется динамической нагрузкой, которую он может воспринимать в процессе вращения бурильной колонны, допустимой статической нагрузкой и частотой вращения, предельным рабочим давлением прокачиваемого бурового раствора, массой и габаритными размерами. Каждый вертлюг имеет стандартную левую коническую замковую резьбу для присоединения к ведущей трубе двух-трех размеров. Корпус вертлюга выполняется обтекаемой формы для того, чтобы он не цеплялся за детали вышки при перемещениях. Вертлюги приспособлены к транспортировке любыми транспортными средствами без упаковки.
КОНСТРУКЦИИ ВЕРТЛЮГОВ
П о конструкции вертлюги для бурения глубоких скважин, изготовляемые отечественными заводами, отличаются мало. Рассмотрим конструкцию вертлюга УВ-250МА (рис. VIII.3).Он состоит из литого стального корпуса 5 с двумя карманами для присоединения к нему штропа 11 при помощи пальцев. Внутренняя полость корпуса разделена по высоте горизонтальной перемычкой, служащей опорной поверхностью основной опоры ствола, усиленной для жесткости вертикальными ребрами. Эта перемычка имеет кольцевую площадку, на которую устанавливается основной опорный подшипник 4.
Над основной опорой в корпусе находятся вспомогательный упорный подшипник 6, воспринимающий усилия, которые возникают вдоль оси от ротора к вертлюгу, и верхний радиальный подшипник 7. Второй радиальный подшипник 3, центрирующий ствол вертлюга 1, расположен в нижней части корпуса. Ствол вертлюга / с вращающимися элементами подшипников 3, 4, 6 и 7 и верхним напорным сальником 9 составляют группу вращающихся деталей вертлюга.
Сверху корпус вертлюга имеет круглое отверстие. Это отверстие закрывается крышкой с кронштейном 8, к которому крепится подвод 10. В крышке 8 установлено верхнее сальниковое уплотнение корпуса, а нижнее уплотнение 2 крепится к нижней части корпуса. Этот сальник служит для предупреждения утечки масла из корпуса вертлюга в процессе работы.
Верхний радиальный 7 и упорный 6 подшипники малонагружены и смазываются консистентной смазкой, для чего в крышке предусмотрена пресс-масленка. Главная опора и нижний радиальный подшипник смазываются жидкой смазкой, которой наполнена масляная ванна корпуса. Жидкое масло служит не только для смазки, но и для отвода тепла, выделяющегося в подшипниках. Надо иметь в виду, что при прокачке через вертлюг бурового раствора с высокой температурой масло в ванне вертлюга нагревается и добавочное тепло трения приводит к повышению температуры выше допустимой (иногда более 100 °С).
Применение быстросъемного напорного сальника значительно упростило и ускорило его замену, а конструкция ствола стала проще и меньшей длины. Практика эксплуатации показывает, что применение большого числа манжет в сальнике не увеличивает срок службы уплотнения вертлюга, так как происходит перегрев манжет и их разрушение вследствие плохого теплоотвода. Оптимальным является использование двух-трех рабочих манжет. В зависимости от конструкции уплотнение осуществляется либо первой, либо последней манжетой, при выходе из строя которой начинает работать вторая манжета и т. д.