183046 (685757), страница 2

Файл №685757 183046 (Абсолютные и относительные величины. Средние величины и показатели вариации) 2 страница183046 (685757) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Решение

Рассчитаем относительные величины структуры розничного товарооборота за каждый квартал и в целом за год.

Исчисленные относительные величины структуры представлены в табл. 1.3.3.

Таблица 1.3.3

Структура розничного товарооборота РФ за 2006 г.

Показатель

Квартал

Всего за год

I

II

III

IV

Оборот розничной торговли

100

100

100

100

100

В том числе товаров:

продовольственных

47,5

47,5

46,0 '

45,5

46,5

непродовольственных

52,5

52,5 '

54,0

54,5

53,5

Данные табл. 1.3.3 свидетельствуют о том, что во второй половине 2006 г. в РФ наметился рост доли продаж непродовольственных товаров.

Относительные показатели интенсивности и уровня экономического развития. Показатели характеризуют степень насыщенности или развития данного явления в определенной среде, являются именованными и могут выражаться в кратных отношениях, процентах, промилле и других формах.

Пример 1.3.5. Среднегодовая численность населения РФ в 2006 г. составила 143,55 млн. чел., число родившихся - 1397,0 тыс. чел.

Определить число родившихся на каждую 1000 чел. населения (относительную величину интенсивности, характеризующую рождаемость).

Решение

Коэффициент рождаемости

=

Число родившихся

1000 =

1397,0

1000 = 9,7%

Среднегодовая численность населения

14366,0

На каждую 1000 чел. населения в 2006 г. в РФ рождалось 9,7 чел.

Одним из показателей уровня экономического развития страны является показатель производства валового внутреннего продукта на душу населения.

Пример 1.3.6. Производство валового внутреннего продукта (ВВП) в РФ в 2006 г. в текущих ценах составило 10 863,4 млрд руб. Среднегодовая численность населения в 2006 г. - 143,55 млн чел.

Определите производство валового внутреннего продукта на душу населения.

Решение

ВВП на душу населения = 10863,4 / 143,55 = 75 677руб.

Следовательно, на душу населения производство ВВП в 2006 г. составило 75 677 руб.

Относительные показатели координации (ОПК).

Показатели характеризуют отношения частей изучаемой совокупности к одной из них, принятой за базу сравнения. Они показывают, во сколько раз одна часть совокупности больше другой, или сколько единиц оДной части приходится на 1, 10, 100, 1000 единиц другой части. Эти относительные величины могут быть исчислены как по абсолютным показателям, так и по показателям структуры.

Пример 1.3.7. Имеются следующие данные о численности экономически активного населения РФ по состоянию на конец ноября 2006 г.:

Показатели

(млн чел.)

Экономически активное население

71,9

В том числе:

занятые в экономике

65,8

безработные

6,1

Исчислите, сколько безработных приходится на 1000 занятых в экономике РФ.

Решение

ОПК= (6,1 / 65,8) 1000 = 92,7 чел.

Следовательно, на каждую 1000 чел., занятых в экономике РФ, приходилось 92,7 чел. безработных.

Относительные показатели сравнения (ОПС).

Показатели характеризуют отношения одноименных абсолютных или относительных показателей, соответствующих одному и тому же периоду или моменту времени, но относящихся к различным объектам или территориям.

3. Сущность средней в статистике, виды и формы средних

Средняя в статистике - обобщающая характеристика совокупности однотипных явлений по какому-либо количественно варьирующему признаку, определяющая уровень признака в расчете на единицу совокупности.

Виды средних

В представленных формулах применены следующие обозначения:

x - значения признака;

- среднее значение признака;

Σ - знак суммирования;

П - знак перемножения;

f (частота) и М (произведение частоты на значения признака) - веса для расчета взвешенной средней:

N и f - численность единиц совокупности;

М - общий объем варьирующего признака.

Если средние вычислить по одним и тем же данным, то приведенные виды средних по своим численным значения встают в следующий ряд:

xh < xg < ха < хq,

иллюстрируя так называемое правило мажорантности средних.

Одна из задач определения средней состоит в правильности выбора вида средней величины.

При выборе вида средней необходимо учитывать экономическое содержание индивидуальных признаков, которое должно быть сохранено и в итоговой средней величине. При этом любые промежуточные действия, включая конечный результат, должны быть экономически значимы.

4. Средняя арифметическая и условия ее применения

Средняя арифметическая применяется в тех случаях, когда объем варьирующего признака всей совокупности образуется как сумма значений этого признака у ее отдельных единиц.

Формулы и техника расчетов следующие:

простой средней арифметической (невзвешенной)

взвешенной средней арифметической

Пример 1.3.8. По данным табл. 1.6.2, повторно приведенной далее, осуществим расчет среднего производственного стажа работников, используя формулу арифметической простой (невзвешенной)

Таблица 1.6.2

Производственный стаж работников и их среднемесячная выработка изделий

Номер работника по списку

Производственный стаж, лет

Среднемесячная выработка изделий, шт.

1

8

10

2

2

6

3

6

7

4

1

6

5

4

9

6

2

8

7

10

12

8

5

10

9

4

8

10

3

7

11

6

9

Применение арифметической средней объясняется тем, что объем варьирующего признака для всей совокупности - общее число проработанных лет работниками (51 год), образуется как сумма стажа каждого работника.

Расчет средней арифметической по данным ряда распределения имеет свои особенности. Проиллюстрируем эти особенности по данным группировки в табл. 1.3.5.

средний арифметический вариация

Таблица 1.3.5

Расчет среднего производственного стажа работников на основе ряда распределения

Стаж, лет

Число работников, f

Середина интервала х

xf

1 – 4

4

2,5

10,0

4 – 7

5

5,5

27,5

7 – 10

2

8,5

17,0

Итого

11

-

54,5

В данном случае следует воспользоваться формулой средней арифметической взвешенной, поскольку интервальные значения признака встречаются не один раз, и эти числа повторений (частоты) не одинаковы.

Конкретными значениями признака, которые должны непосредственно участвовать в расчетах, служат середины (центры) интервалов (но не средние в интервалах значения!), а весами - частоты:

Данный результат отличается от полученного на основе средней арифметической простой. Это объясняется тем, что в расчете на основе ряда распределения мы располагаем не исходными индивидуальными данными, а лишь сведениями о величине середины (центра) интервала.

5. Средняя гармоническая и условия ее применения

Формулы и техника расчета средней гармонической следующие:

простой средней гармонической

взвешенной средней гармонической

Общий подход к выбору правильности вида средней изложен в подразделе 1.3.3.

В данном случае приведем дополнительное условие применения средней гармонической взвешенной (поскольку в практике расчетов взвешенные средние используются чаще).

Средняя гармоническая взвешенная применяется в тех случаях, когда весами являются не частоты f, а произведения этих частот на значения признака: М = xf.

Пример 1.3.9. Имеются следующие данные (табл. 1.3.6).

Таблица 1.3.6

Заработная плата рабочих в цехах предприятия

Цех

Средняя заработная плата, руб.

Фонд заработной платы, тыс. руб.

Литейный

3820

191

Сборочный

2960

592

Вычислите среднюю заработную плату рабочих по предприятию в целом.

Решение

Средняя заработная плата рабочих по цехам может быть вычислена делением фонда заработной платы на численность рабочих. Этот подход должен быть сохранен и при расчете общей средней, т.е. в числителе дроби необходимо представить общий по всем цехам фонд заработной платы, а в знаменателе – общую численность рабочих. Однако фонд заработной платы по цехам (М) есть произведение средних заработков на число рабочих f. Фонд заработной платы - единственно возможный в данном случае соизмеритель - вес при расчете средней.

Оба эти обстоятельства обусловливают применение средней гармонической, а с учетом того, что заработки по отдельным цехам получают неодинаковые по численности группы рабочих, следует использовать среднюю гармоническую взвешенную. Тогда

При этом 783000 руб. - общий фонд заработной платы по предприятию, 250 чел. - общая численность работников (50 и 200 чел. - численность по каждому цеху в отдельности).

Если веса при расчете средней у отдельных единиц совокупности одинаковы, то средняя гармоническая взвешенная обращается в среднюю гармоническую простую:

(M выносится за скобки, поскольку является общим множителем). Проиллюстрируем расчет на условном примере.

Пример 1.3.10. Цена за единицу товара А, продаваемого в первой торговой точке, составила 20 руб., во второй - 30 руб. Какова средняя продажная цена товара, если выручка от продаж товара в торговых точках одинакова?

Решение

Поскольку весами при расчете средней являются выручки от продажи (товарооборота), а сама выручка представляет собой произведение цены х на количество проданного товара/, вычисления проводили по средней гармонической взвешенной, равенство весов позволяет осуществлять расчеты по формуле средней гармонической простой:

Характеристики

Тип файла
Документ
Размер
2,89 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее