177673 (685606), страница 5
Текст из файла (страница 5)
Любое изменение уровней ряда определяется базисным и цепным способами.
Базисное абсолютное изменение представляет собой разность конкретного и первого уровней ряда, определяясь по формуле
(1.43)
Цепное абсолютное изменение представляет собой разность конкретного и предыдущего уровней ряда, определяясь по формуле
(1.44)
По знаку абсолютного изменения делается вывод о характере развития явления: при > 0 — рост, при
< 0 — спад, при
= 0 — стабильность.
Для проверки правильности расчетов применяется правило, согласно которому сумма цепных абсолютных изменений равняется последнему базисному. То есть
(1.45)
где к = n-1 — количество изменений уровней ряда (r = 1 ...к).
Базисное относительное изменение представляет собой соотношение конкретного и первого уровней ряда, определяясь по формуле
(1.46)
Цепное относительное изменение представляет собой соотношение конкретного и предыдущего уровней ряда, определяясь по формуле
(1.47)
Относительные изменения уровней — это по существу индексы динамики, критериальным значением которых служит 1. Если они больше ее, имеет место рост явления, меньше ее — спад, а при равенстве единице наблюдается стабильность явления.
Вычитая единицу из относительных изменений, получают темп изменения уровней, критериальным значением которого служит 0. При положительном темпе изменения имеет место рост явления, при отрицательном — спад, а при нулевом темпе изменения наблюдается стабильность явления.
Для проверки правильности расчетов применяется правило, согласно которому произведение цепных относительных изменений равняется последнему базисному.
То есть
(1.48)
4.3 Средний уровень ряда и средние изменения
Способ расчета среднего уровня зависит от того, моментный ряд или интервальный. При моментном ряде применяется формула средней хронологической величины (1.17), но при соответствующих обозначениях имеющая вид
=
, (1.49)
где Y1 и Yn — первый и последний уровни ряда; Yi — промежуточные уровни.
В случае интервального ряда его средний уровень определяется по формуле простой средней арифметической величины как
=
(1.50)
Среднее изменение уровней ряда определяется также базисным и цепным способами.
Базисное среднее абсолютное изменение представляет собой частное от деления последнего базисного абсолютного изменения на количество изменений. То есть
Б =
(1.51)
Цепное среднее абсолютное изменение уровней ряда представляет собой частное от деления суммы всех цепных абсолютных изменений на количество изменений.
То есть
Ц =
(1.52)
По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность.
Из правила контроля базисных и цепных абсолютных изменений согласно формуле (1.45) следует, что базисное и цепное среднее изменение должны быть равными.
Наряду со средними абсолютным изменением рассчитывается и среднее относительное тоже базисным и цепным способами.
Базисное среднее относительное изменение определяется по формуле
Б=
=
(1.53)
Цепное среднее относительное изменение определяется по формуле
Ц=
(1.54)
Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность.
Вычитанием 1 из базисного или цепного среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики.
4.4 Проверка ряда на наличие тренда
Всякий ряд динамики теоретически может быть представлен в виде составляющих:
-
тренд – основная тенденция развития ряда, обусловливающая увеличение или снижение его уровней;
-
циклические (периодические) колебания (в том числе сезонные);
-
случайные колебания.
Проверка ряда динамики на наличие в нем тренда возможна несколькими способами (в порядке усложнения):
1. Графический метод, когда на графике по оси абсцисс откладывается время, а по оси ординат – уровни ряда. Соединив полученные точки линиями, в большинстве случаев можно выявить тренд визуально.
2. Метод средних, согласно которому изучаемый ряд динамики делится на два равных подряда, для каждого из которых определяется средняя величина и
. И если они различаются существенно (более 10%), то признается наличие тренда.
3. Метод Кокса и Стюарта, согласно которому ряд динамики делится на три равные по числу уровней группы и существенное различие выявляется между средними уровнями первой и третьей групп. Если общее число уровней не делится на три, то надо добавить недостающий уровень или исключить излишний.
4. Метод Валлиса и Мура, согласно которому наличие тренда признается в том случае, если ряд не содержит либо содержит в приемлемом количестве фазы, т.е. перемену знака при определении абсолютного изменения цепным способом.
-
Метод серий, согласно которому каждый уровень ряда считается принадлежащим к одному из двух типов, например типу А – меньше медианного или среднего значения или типу В – больше его. Затем в образовавшейся последовательности типов устанавливается число серий R. Они называются последовательностью уровней одинакового типа, которая граничит с уровнями другого типа. Если в ряду динамики общая тенденция к росту или снижению уровней отсутствует, то число серий является случайной величиной, распределенной приближенно по нормальному закону (при n>30) или по распределению Стьюдента (при n<30). Следовательно, если закономерности в изменениях уровней нет, то случайная величина R оказывается в доверительном интервале
где t – коэффициент доверия для принятого уровня вероятности при нормальном законе или со степенью свободы k = (n - 1) при распределении Стьюдента;
– среднее число серий в ряду, определяемое по формуле:
;
– среднее квадратическое отклонение числа серий в ряду, определяемое по формуле
.
Подставляя среднее число серий и его среднее квадратическое отклонение в доверительный интервал, получим его развернутое значение в виде
.
Значит, с заданной вероятностью тренд имеет место, если установленное число серий ряда не входит в доверительный интервал, и тренд отсутствует, если установленное число серий находится в этом интервале.
4.5 Непосредственное выделение тренда
Этот процесс можно осуществлять тремя способами.
1. Укрупнение интервалов, когда ряд динамики делят на некоторое достаточно большое число равных интервалов. Если интервальные средние уровни не позволяют увидеть тенденцию, то увеличивают размах интервалов, уменьшая одновременно их число.
2. Методом скользящей средней, когда уровни ряда заменяются средними величинами, получаемыми из данного уровня и нескольких симметрично его окружающих уровней. Такие средние называются интервалом сглаживания. Он может быть нечетным (3, 5, 7 и т.д. уровней) или четным (2, 4, 6 и т.д. уровней). Чаще применяется нечетный интервал, потому что сглаживание идет проще. При этом формулы для расчета скользящей средней величины имеют вид
;
.
Недостаток метода скользящей средней заключается в условности определения сглаженных значений для уровней в начале и в конце ряда. Получают их по специальным формулам. Так, при сглаживании по трем уровням условное значение первого уровня нового ряда рассчитывается по формуле
.
Для уровня в конце нового ряда при таком сглаживании формула аналогична:
.
При сглаживании по пяти уровням условными оказываются по два уровня в начале и в конце нового ряда. Первое условное значение определяется по формуле
,
а второе – по формуле
.
Для двух уровней в конце нового ряда при таком сглаживании формулы аналогичны. Так, последнее расчетное значение определяется по формуле
,
а предпоследнее значение по формуле
.
3. Метод аналитического выравнивания, под которым понимается формализация основной, проявляющейся во времени тенденции развития изучаемого явления. В итоге получают наиболее общий результат действия всех причинных факторов, а отклонение конкретных уровней ряда от формализованных значений объясняют действием фактов, проявляющихся случайно или циклически. В результате приходят к трендовой модели вида
, (1.55)
где – математическая функция развития;
– случайное или циклическое отклонение от функции; t – время в виде номера периода (уровня ряда). Цель такого метода – выбор теоретической зависимости
в качестве одной из функций:
– прямая линия;
– гипербола;
– парабола;
– степенная;
– ряд Фурье.
Определение параметров в этих функциях может вестись несколькими способами, но самые незначительные отклонения аналитических (теоретических) уровней (
– читается как «игрек, выравненный по t») от фактических (
) дает метод наименьших квадратов – МНК (т.е.
минимально). При этом методе учитываются все эмпирические уровни и должна обеспечиваться минимальная сумма квадратов отклонений эмпирических значений уровней
от теоретических
:
. (1.56)
В частности, при выравнивании по прямой вида , параметры
и
отыскиваются по МНК следующим образом. В формуле (1.56) вместо
записываем его конкретное выражение
. Тогда
.
Дальнейшее решение сводится к задаче на экстремум, т.е. к определению того, при каком значении и
функция двух переменных S может достигнуть минимума. Как известно, для этого надо найти частные производные S по
и
, приравнять их к нулю и после элементарных преобразований решить систему двух уравнений с двумя неизвестными.
В соответствии с вышеизложенным найдем частные производные
Сократив каждое уравнение на 2, раскрыв скобки и перенеся члены с y в правую сторону, а остальные – оставив в левой, получим систему нормальных уравнений
где n – количество уровней ряда; t – порядковый номер в условном обозначении периода или момента времени; y – уровни эмпирического ряда.
Эта система и, соответственно, расчет параметров и
упрощаются, если отсчет времени ведется от середины ряда. Например, при нечетном числе уровней серединная точка (год, месяц) принимается за нуль. Тогда предшествующие периоды обозначаются соответственно –1, –2, –3 и т.д., а следующие за средним (центральным) – соответственно 1, 2, 3 и т.д. При четном числе уровней два серединных момента (периода) времени обозначают –1 и +1, а все последующие и предыдущие, соответственно, через два интервала:
,
,
и т.д.
При таком порядке отсчета времени (от середины ряда) = 0, поэтому система нормальных уравнений упрощается до следующих двух уравнений, каждое из которых решается самостоятельно:
(1.57)
Как видим, при такой нумерации периодов параметр представляет собой среднее значение уровней ряда. К данному виду можно свести гиперболу, если ввести замену
, тогда к ней полностью применима система уравнений (1.57).
По полученной модели для каждого периода (каждой даты) определяются теоретические уровни тренда ( ) и оценивается надежность (адекватность) выбранной модели тренда.
4.6 Оценка надежности уравнения тренда
Выбрав и составив уравнение, проводят оценку его надежности с помощью критерия Фишера, сравнивая его расчетное значение Fр с теоретическими значениями FТ, приведенными в специальных таблицах любого справочника по высшей математике. При этом расчетный критерий Фишера определяется по формуле
, (1.58)
где k – число параметров (членов) выбранного уравнения тренда; ДА – дисперсия аналитическая; До – дисперсия остаточная в виде разности фактической ДФ и аналитической дисперсий.
В свою очередь, фактическая и аналитическая дисперсии отклонений уровней ряда определяются по формулам
; (1.59)
. (1.60)
Сравнение расчетного и теоретического значений критерия Фишера ведется обычно при уровне значимости 0,05 с учетом степеней свободы и
. При условии Fр> FТ считается, что выбранная математическая модель ряда динамики адекватно отражает обнаруженный в нем тренд.
4.7 Гармонический анализ сезонных колебаний1*
Особое место при анализе сезонных колебаний занимает выравнивание с помощью ряда Фурье, в котором уровни можно выразить как функцию времени следующим уравнением:
.
То есть сезонные колебания уровней динамического ряда можно представить в виде синусоидальных колебаний. Поскольку последние представляют собой гармонические колебания, то синусоиды, полученные при выравнивании по ряду Фурье, называют гармониками различных порядков (показатель k в этом уравнении определяет число гармоник). Обычно при выравнивании по ряду Фурье рассчитывают несколько гармоник (чаще не более 4) и затем уже определяют, с каким числом гармоник ряд Фурье наилучшим образом отражает изменения уровней ряда.
При выравнивании по ряду Фурье периодические колебания уровней динамического ряда представлены в виде суммы нескольких синусоид (гармоник), наложенных друг на друга.
Так, при k=1 ряд Фурье будет иметь вид
,
а при k=2, соответственно,
и так далее.
Параметры уравнения теоретических уровней, определяемого рядом Фурье, находят, как и в других случаях, методом наименьших квадратов. Приведем без вывода формулы, используемые для исчисления параметров ряда Фурье:
;
;
.
Последовательные значения t обычно определяются от 0 с увеличением (приростом), равным , где n – число уровней эмпирического ряда.
Например, при n=10 временнЫе точки t можно записать следующим образом:
,
или (после сокращения)
;
;
;
;
;
;
;
;
.
При n=12 значения t, соответственно будут
;
.
Значения и
удобно расположить в таблице (для двух гармоник):
В следующей таблице приведены исходные данные (графы 1 и 2) и расчет показателей, необходимых для получения уравнений первой и второй гармоники (k=1 и k=2).
Искомое уравнение первой гармоники имеет вид
.
В шестой графе получены теоретические значения объема продажи зимней одежды по месяцам. Очевидно, что они значительно отличаются от эмпирических. Поэтому определим уравнение второй гармоники, т.е.
.
В девятой графе получены теоретические значения , которые более близки к эмпирическим уровням, чем
. Об этом свидетельствует и сумма квадратов отклонений теоретических значений от эмпирических (итого двух последних столбцов). После выбора оптимального уравнения, естественно, что его нужно проверить на адекватность с помощью критерия Фишера (параграф 4.6). В нашем примере FР1=14,45>FТ=4,26, FР2=7,60>FТ=4,12 значит обе модели адекватны и их можно использовать для прогнозирования. Графическое отображение на следующей диаграмме свидетельствует о более точном представлении во второй гармонике.
Аналогично рассчитываются параметры уравнения с применением третьей и четвертой гармоник и проверяют близость теоретических значений к эмпирическим.
4.8 Прогнозирование при помощи тренда
Нахождение по имеющимся данным за определенный период времени некоторых недостающих значений признака внутри этого периода называется интерполяцией. Нахождение значений признака за пределами анализируемого периода называется экстраполяцией.
30>