177673 (685606), страница 3

Файл №685606 177673 (Основные понятия статистики) 3 страница177673 (685606) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

fMo-1 – то же для интервала, предшествующего модальному;

fMo+1 – то же для интервала, следующего за модальным;

X – величина интервала изменения признака в группах.

Очевидно, что в формуле (1.20) и (1.21) можно заменить частоты f на доли d, так как , а можно вынести за скобки как в числителе, так и в знаменателе и сократить.

Показателями типа медианы, характеризующими структуру рядов распределения признака, являются квартили (делят ряд на 4 равные части), квинтили (на 5), децили (на 10), перцентили (на 100).


2.6 Средние отклонения от средних величин

Каждая статистическая величина от среднего значения отличается (отклоняется) по-разному и в любую сторону: со знаком плюс или минус. Поэтому для оценки типичности полученной средней величины надо знать величину среднего отклонения совокупности от нее. Поскольку неизбежны и отрицательные отдельные отклонения, необходима нейтрализация знака минус, иначе среднего отклонения не получится. Этого можно достичь двумя способами: принять отрицательные отклонения по модулю или возвести их во вторую степень (в квадрат).

При первом способе образуется среднее линейное отклонение, а при втором — среднее квадратическое. В связи с тем, что средние величины могут быть простыми и взвешенными, аналогичными могут быть и средние отклонения. Поэтому среднее линейное отклонение определяется по формулам

простое; (1.22)

– взвешенное. (1.23)

В этих формулах прямые скобки означают, что разности или отклонения берутся по модулю, то есть без учета знака. Если ошибочно вместо прямых скобок принять обычные круглые, то получится Л=0.

При использовании второго способа вначале определяется дисперсия отклонений по формулам

простая; (1.24)

взвешенная. (1.25)

Дисперсия альтернативного признака (т.е. имеющего две взаимоисключающие разновидности, например, пол человека – мужской или женский, качество продукции – годная или бракованная) определяется по формуле 1.25, если вместо Xi подставить 1 и 0 (так как признак может принимать только 2 значения). Зная, что:

p + q = 1,

где p – доля единиц, обладающих признаком, q – доля единиц не обладающих им.

Среднее значение можно найти по формуле (1.14):

.

Таким образом получим формулу дисперсии альтернативного признака, применив формулу (1.25):

.

Таким образом, дисперсия альтернативного признака равна

. (1.26)

Предельное значение дисперсии альтернативного признака равно 0,25; оно получается при p = q = 0,5.

В отличие от математики статистика оперирует не абстрактными, а смысловыми величинами, имеющими размерность. Поэтому и дисперсия здесь не безразмерная, как в математике, а сопровождается квадратической размерностью. Например, если статистическая величина измеряется в годах, или рублях, то дисперсия отклонений получится в «квадратных» годах или в «квадратных» рублях.

Для получения обычной размерности находится среднее квадратическое отклонение («сигма») как корень квадратный из дисперсии. То есть

= . (1.27)

Однако значения средних отклонений, как любой абсолютной величины, служат лишь количественной мерой анализа статистической совокупности. Для качественного анализа применяются относительные критерии, называемые коэффициентами вариации.


2.7 Коэффициенты вариации

Вариация — это несовпадение значений одной и той же статистической величины у разных объектов в силу особенностей их собственного развития, а также различия условий, в которых они находятся. Вариация имеет объективный характер и помогает познать сущность изучаемого явления. Если средняя величина сглаживает индивидуальные различия, то вариация, наоборот, их подчеркивает, устанавливая типичность или не типичность найденной средней величины для конкретной статистической совокупности. Тем самым можно делать вывод о качественности подобранных статистических данных.

Вариация измеряется с помощью относительных величин, называемых коэффициентами вариации и определяемых в виде отношения среднего отклонения к средней величине.

Поскольку среднее отклонение может определяться линейным и квадратическим способами, то соответствующими могут быть и коэффициенты вариации. Следовательно, коэффициенты вариации надо определять по формулам

линейный; (1.28)

квадратический. (1.29)

Значения коэффициента вариации изменяются от 0 до 1 и чем ближе он к нулю, тем типичнее найденная средняя величина для изучаемой статистической совокупности, а значит и качественнее подобраны статистические данные. При этом критериальным значением коэффициента вариации служит 1/3.

То есть средняя величина считается типичной для данной совокупности при λ 0,333 или при ν 0,333. В ином случае средняя величина не типична и требуется пересмотреть статистическую совокупность с целью включения в нее более объективных статистических величин.

Обычно квадратический коэффициент вариации несколько (примерно на 25%) больше линейного, рассчитанные по одним и тем же данным. А значит возможен случай, когда λ 0,333 и ν 0,333, тогда необходимо взять среднюю из этих коэффициентов и по ее значению сделать окончательный вывод о не/типичности найденной средней величины.

С помощью линейного коэффициента вариации принципиальный вывод о типичности или не типичности средней величины можно получить проще и быстрее, чем с помощью квадратического. Однако квадратический коэффициент применяется чаще, так как существует несколько способов для вычисления дисперсии.

У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со стандартным отклонением σ = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а стандартное отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15*100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30*100 = 33,3 %).

Поэтому возможен дополнительный анализ статистической совокупности с помощью коэффициента осцилляции, определяемого по формуле

, (1.30)

где R — размах вариации в виде разности наибольшего и наименьшего значений в совокупности статистических величин. То есть

R = Хмах –Хmin, (1.31)

где Xмax и Xmin — максимальное и минимальное значения в совокупности.

При упорядочении статистических величин в совокупности образуются группировочные интервалы. Тогда под обозначением ∆Х понимается размах интервала, а среднее интервальное значение обозначается ХИ.

В случае ориентировки только на квадратический коэффициент вариации могут применяться разные методы определения дисперсии.


2.8 Определение дисперсии методом моментов

Преобразованием приведенных выше логических формул определения дисперсии могут быть получены ее новые формулы для расчета, например, методом моментов, которым иногда значение дисперсии получается быстрее.

= = =

Окончательно записываем, что дисперсия методом моментов определяется по формуле

Д = , (1.32)

где – средняя квадратов статистических величин; – квадрат их средней величины.

Эти параметры нередко имеют и другие названия. Вычитаемое называют начальным моментом первого порядка, уменьшаемое – начальным моментом второго порядка, а сама дисперсия при этом называется центральным моментом второго порядка.

Для иллюстрации пользования формулами дисперсии рассмотрим простейший пример, приняв абстрактно Х1 = 2, Х2 = 4, Х3 = 6, для которых среднее значение, очевидно, равняется = 4. Тогда дисперсия простая по логической формуле (1.24) будет равна

Д3 = ((2-4)2 + (4-4)2 + (6-4)2)/3 = 8/3 = 2,67

Применив формулу моментов (1.32), получим тот же результат

Д3 =(22 + 42 + 6 2 )/3 – 42 = 56/3 – 16 = 2,67

В данном примере быстрота определения дисперсии методом моментов не достаточно ощутима, но она проявляется очень заметно при большом количестве статистических данных.


2.9 Свойства средней арифметической и дисперсии

В статистических расчетах эти характеристики статистической совокупности зачастую применяются во взаимодействии. При этом с целью приведения их к удобному для анализа виду при громоздких значениях статистических величин используют следующие свойства.

  1. Если каждую статистическую величину изменить на одно число (прибавить или отнять), то средняя арифметическая изменится на это число, а дисперсия при этом не изменится.

  2. Если каждую статистическую величину изменить в одинаковое число раз (умножить или разделить), то средняя арифметическая изменится во столько же раз, а дисперсия изменится в квадрат таких раз.

Доказать эти свойства можно путем математических преобразований соответствующих формул, но гораздо проще доказательство получается с помощью следующего численного примера.

Принимая предыдущие три статистические величины с их значениями 2, 4, и 6, сначала прибавим к каждой из них 5, а потом умножим каждую из них на 5. Тогда получим измененные значения статистических величин, представленные матрицей

X1=2; X1’=2+5=7; X1’’=2*5=10.

X2=4; X2’=4+5=9; X2’’=4*5=10.

X3=6; X3’=6+5=11; X3’’=6*5=30.

= 4; ’=9; ’’=20.

Д=2,67; Д’=2,67; Д’’=66,67.

В этой матрице значения средних арифметических очевидны, а первоначальное значение дисперсии было найдено в предыдущем примере. Расчет других ее значений приведен ниже по логической формуле (1.24)

Д’= ((7-9)2 + (9-9)2 + (11-9)2)/3 = 2,67

Д’’= ((10-20)2 + (20-20)2 + (30-20)2)/3 = 66,67

Отмечаем, что отношение 66,67/2,67 дает ровно 25 или 52. То есть при увеличении каждой статистической величины в 5 раз дисперсия увеличилась в 25 раз. Аналогичные численные доказательства можно выполнить и в случаях противоположного изменения статистических величин.


3. Выборочное наблюдение


3.1 Понятие и отбор единиц

Выборочный метод используется, когда применение сплошного наблюдения физически невозможно из-за огромного массива данных или экономически нецелесообразно. Физическая невозможность имеет место, например, при изучении пассажиропотоков, рыночных цен, семейных бюджетов. Экономическая нецелесообразность имеет место при оценке качества товаров, связанной с их уничтожением. Например, дегустация, испытание кирпичей на прочность и т.п. Выборочное наблюдение используется также для проверки результатов сплошного.

Статистические величины, отобранные для наблюдения, составляют выборочную совокупность или выборку, а весь их массив - генеральную совокупность. При этом число величин в выборке обозначают п, во всей генеральной совокупности — как обычно N. Отношение n/N называется относительный размер или частость выборки, измеряемая в процентах.

Характеристики

Тип файла
Документ
Размер
5,3 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее