11643 (685001), страница 4
Текст из файла (страница 4)
Микроморфологические признаки - особенности клеточной морфологии: размеры и форма клетки, тип вегетативного размножения, строение мицелия и псевдомицелия, формирование бесполых спор (баллистоспор, хламидоспор), характеристики полового размножения (гологамия или педогамия, форма аскоспор и др.
Цитологические признаки - особенности строения клеток и клеточных структур, например, строение клеточной стенки, структура септ мицелия.
Физиологические признаки, определяющие тип питания и способность к росту в различных условиях. К ним относится определение способности к анаэробному сбраживанию или аэробной ассимиляции различных источников углерода, способность к росту при различных значениях pH, осмотического давления среды, устойчивость к различным ингибиторам роста.( Шлегель Г).
Биохимические признаки, характеризующие химический состав клетки и отдельных ее компонентов: образование ферментов, специфических метаболитов, внеклеточных продуктов, например, моносахаридный состав внеклеточных полисахаридов.
Генетические признаки, включающие характеристики генома.
Арсенал генетических признаков и методов их определения особенно расширился в последнее время в связи с интенсивным развитием молекулярной биологии и стал играть ключевую роль в систематике дрожжей. К ним относятся нуклеотидный состав ДНК, степень гомологии ДНК у разных видов, наличие уникальных олигонуклеотидных последовательностей в геноме, последовательность нуклеотидов в определенных генах.
Экологические признаки, определяющие характер распространения вида в природных местообитаниях, а также чувствительность или резистентность к различным экологическим факторам, патогенные свойства.
Для выявления всех этих признаков разработаны стандартные методы, описываемые в определителях или специальных руководствах.
Морфологические характеристики, имеющие наибольшее значение для дифференциации родов дрожжей, были подробно рассмотрены выше. Для разделения видов у дрожжей традиционно использовались в основном физиологические характеристики - способность к росту на различных источниках углерода и азота.
Некоторые цитологические и биохимические критерии, разработанные в последние десятилетия, сыграли особенно большую роль в классификации дрожжей на родовом и надродовом уровне, значительно изменив представления об их группировании и филогении. Эти признаки имеет смысл рассмотреть более подробно.
Изучение полисахаридов, которые составляют клеточную стенку и капсулу, оказало существенное воздействие на систематику и преставления о филогении дрожжей. Характеристика моносахаридного состава полисахаридов клеточных стенок используется главным образом для дифференциации дрожжей на родовом и надродовом уровне. В то же время, детальные исследования химического состава клеточной стенки были проведены лишь у небольшого числа видов дрожжей. Наиболее подробно исследовано строение клеточной стенки Saccharomyces cerevisiae и нескольких близких аскомицетовых видов.( Гриневич. А.Г., Босенко. А.М).
Как уже отмечалось, аскомицетовые почкующиеся дрожжи содержат в качестве главного структурного компонента клеточной стенки β (1>3)-глюкан. Другой существенный компонент - комплекс белка и глюкоманнана. Оказалось, что боковые цепи этих полисахаридов, особенно маннана, существенно варьируют по моносахаридному составу у разных видов дрожжей. Моно- и олигосахариды, образовавшиеся при кислотном гидролизе углеводов клеточной стенки, можно разделить с помощью гельфильтрации.
Другой способ, применявшийся для характеристики полисахаридов - сравнение спектров протонного магнитного резонанса, который позволяет определять пропорции и размер боковых цепей в различных маннанах. Считается, что сходные спектры протонного магнитного резонанса клеточных маннанов указывают на близкое родство видов. Эти характеристики оказались очень полезными для классификации дрожжей, например, для группирования родственных видов в многовидовых сборных анаморфных родах типа Candida.
Наряду с глюканом и маннаном почкующиеся аскомицетовые дрожжи содержат около 1-2 % хитина, который почти полностью локализован в областях шрамов почкования. Однако небольшое количество хитина (около 0.1 %) рассеяно по всей клеточной стенке.( Грачёва. И.М.).
Напротив, дрожжи базидиомицетового аффинитета характеризуются намного более высоким содержанием хитина (до 10 %). Таким образом, это различие можно использовать в качестве таксономического признака для разделения аскомицетовых и базидиомицетовых анаморф. Кроме того, оказалось, что содержание хитина в стенках некоторых мицелиальных аскомицетовых дрожжей, например, у видов Saccharomycopsis, значительно выше, чем у истинных одноклеточных дрожжей, таких как Saccharomyces cerevisiae.( http://soil.msu.ru/soilyeasts/pics/AscosporeForms.htm).
Наиболее отличным по моносахаридному составу оказался состав клеточной стенки делящихся дрожжей Schizosaccharomyces. Виды этого рода содержат в дополнение к β-глюканам другой главный структурный полисахарид, а именно α(1>3)-глюкан. Маннан Schizosaccharomyces также отличается по строению от маннана почкующихся дрожжей, главным образом присутствием галактозных остатков. Это позволило предположить, что делящиеся дрожжи имеют уникальный состав клеточной стенки и не родственны другим группам аскомицетовых дрожжей. Позднее это предположение было подтверждено данными по сравнению нуклеотидных последовательностей рРНК.
Еще большее значение играют характеристики моносахаридного состава клеточных стенок в систематике базидиомицетовых дрожжей. Особенно ценным считается такой признак, как присутствие или отсутствие D-ксилозы в клеточной стенке или в экстрактах целых клеток. По этому признаку все гетеробазидиомицетовые дрожжи были разбиты на две группы: спороболомицетовые (отсутствует ксилоза и часто содержится фукоза), которые включают виды родов Rhodotorula, Rhodosporidium, Sporobolomyces, и филобазидиевые (содержат ксилозу и обычно глюкуроновую кислоту), включающие роды Bullera, Cryptococcus, Filobasidium, Phaffia и некоторые виды Trichosporon. Такое разделение также подтверждается другими молекулярно-биологическими критериями.
Несмотря на несомненную важность такого признака, как состав углеводов клеточной стенки, следует подчеркнуть, что он не является решающим критерием в систематике дрожжей, а ценен только в комбинации с другими хемотаксономическими и молекулярными признаками, включая анализ последовательности рРНК. Такой полифазный подход для создания надежной таксономической системы поддерживается большинством систематиков.( Бабицкая В.Г., Стахеев И.В.).
Дрожжи и дрожжеподобные грибы содержат в качестве одного из компонентов цепи переноса электронов кофермент Q, или убихинон.
Убихиноны - группа соединений, в которых к 2,3-диметоксил-5-метилбензоксихинону присоединена в 6 положении боковая цепь из нескольких изопреноидных остатков. У известных гомологов кофермента Q количество изопреноидных остатков варьирует от 5 до 10. По количеству изопреноидных остатков различают до шести типов кофермента Q от Q-5 до Q-10. У базидиомицетовых дрожжей обнаружен также дигидрогенированный гомолог кофермента Q с насыщенной двойной связью в изопреноидных остатках, обозначаемый как Q-10 (H2). Кофермент Q выделяют с помощью тонкослойной хроматографии из гексанового эктракта гидролизованных клеток дрожжей. Для определения типа кофермента Q используют различные хроматографические методы, включая жидкостную, тонкослойную и бумажную хроматографию, а также масспектрометрию.
Тип кофермента Q оказался очень полезным признаком для классификации дрожжей и дрожжеподобных грибов. Прежде всего, он различен у аскомицетовых и базидиомицетовых дрожжей. У первых преобладают убихиноны с 5-7 изопреноидными остатками (Q-5 - Q-7), у вторых - с 8-10 (Q-8 - Q-10). Однако, имеются и исключения, например, убихинон Q-10 обнаружен у представителей родов Lipomyces и Schizosaccharomyces. Особенно важную роль сыграл тип кофермента Q в классификации анаморфных дрожжей на родовом уровне. Считается, что этот признак не должен существенно варьировать внутри рода, и отличия по типу кофермента Q достаточно для отнесения видов к разным родам в том случае, когда это сопровождается и другими существенными различиями, например, по морфологическим признакам.
Определение типа кофермента Q, вместе с изучением моносахаридного состава клеточных стенок сыграло решающую роль в переклассификации родов анаморфных баллистоспоровых дрожжей (Bensingtonia, Bullera, Sporobolomyces, Udeniomyces), дрожжей, характеризующихся образованием почек на стеригмах (Sterigmatomyces, Fellomyces, Kurtzmanomyces). Все эти роды характеризуются одним типом кофермента Q. В то же время, в таких родах, как Cryptococcus, Candida, тип кофермента Q варьирует по видам, что подтверждает их условность и филогенетическую гетерогенность.
Развитие методов электронной микроскопии позволило использовать для классификации дрожжей ряд цитологических признаков. Выше уже были рассмотрены такие характеристики, как ультраструктура клеточной стенки, цитологические особенности образования почки (голобластическое и энтеробластическое почкование), которые оказались различными у аскомицетовых и базидиомицетовых дрожжей. Еще одним важным цитологическим признаком является ультраструктура септ мицелия у диморфных дрожжеподобных грибов. Деление клеток мицелия начинается с образования тонкого кольца на клеточной мембране. Кольцо начинает центростремительно расти и разделяет клетку. Затем на внешней поверхности мембраны откладывается вновь синтезируемый материал клеточной стенки, формируя септу.
Детальные исследования, проведенные с помощью электронной микроскопии, показали, что ультраструктура этих септ существенно различается у разных групп грибов и может служить хорошим критерием для их филогенетической классификации.
В гифах аскомицетовых дрожжеподобных грибов септы в основном гомогенные и электроннопрозрачные. В септах имеются поры, которые достаточно велики для прохода ядер. С обеих сторон поры часто располагаются мелкие мембранные пузырьки, так называемые тельца Воронина. Гифы дрожжеподобных грибов рода Ambrosiozyma имеют септы с сильно утолщенным центральным участком. У некоторых дрожжеподобных грибов в центре сформированной септы имеется лишь очень узкий мембранный канал, так называемая микропора. У других видов в септе могут формироваться множественные каналы - плазмодесмы. Наличие таких плазмодесм явилось важным свидетельством о наличии филогенетической связи анаморфного рода Zygozyma с семействами Lipomycetaceae и Dipodascaceae.( Гречушкина Н.).
У большинства базидиомицетовых дрожжей в центре септы формируется пора, имеющая сложное строение: края септы раздуты в виде тора, а с двух сторон поры имеются характерные мембранные образования - парентосомы. В некоторых исследованиях было показано, что тороидально раздувшиеся септы (долипоры) на самом деле представляют собой артефакт химической фиксации, используемой при подготовке образцов к электронной микроскопии. Такие бочкообразные вздутия отсутствовали в образцах, подготовленных с помощью быстрого замораживания. Тем не менее, эти артефакты четко воспроизводятся у одних и тех же видов, коррелируют с другими таксономическими признаками и поэтому могут использоваться в систематике. Тонкое строение комплекса долипор и парентосом служит важным диагностическим признаком для классификации базидиомицетовых дрожжеподобных грибов.
Аскомицетовые и базидиомицетовые грибы легко отличить по характеру полового размножения: формированию эндогенных спор в асках у аскомицетов и экзогенных спор на базидиях у базидиомицетов. Аналогичные структуры формируют при половом размножении и дрожжевые грибы. Поэтому особую сложность для классификации представляют анаморфные дрожжи, у которых отсутствует половая стадия в жизненном цикле. Формально такие грибы относят к особому классу Deuteromycetes, однако по сути они представляют собой лишь стадии в полном жизненном цикле аскомицетов или базидиомицетов. Половое размножение у таких дрожжей может отсутствовать по разным причинам. Во-первых, многие дрожжи гетероталличны, и для осуществления полового процесса необходимы штаммы разных типов спаривания. В чистой культуре таких дрожжей, представленной только одним типом спаривания, половое размножение невозможно. Во-вторых, половой процесс может запускаться лишь в определенных условиях, например, при наличии определенных химических факторов, которые могут отсутствовать в лабораторной среде. Наконец, у многих видов способность к половому размножению, по-видимому, вообще утеряна в ходе эволюции.( Грачёва. И.М.).
По совокупности морфологических и физиологических признаков, которые использовались на первых этапах развития систематики дрожжей, отличить аскомицетовые и базидиомицетовые дрожжи в анаморфном состоянии было практически невозможно. Это привело к тому, что некоторые крупные роды несовершенных дрожжей включали анаморфы как аскомицетов, так и базидиомицетов. В первую очередь это относится к роду Candida, описанному в 1923 г. Диагноз рода был очень расплывчатым: «Немногочисленные гифы, стелющиеся, распадающиеся на короткие и длинные фрагменты. Конидии, возникающие путем почкования из гиф или на вершине одна другой, мелкие и бесцветные». Под такое описание подходили самые различные дрожжеподобные грибы, и поэтому в дальнейшем оказалось возможным включение в этот род многих видов, явно неродственных друг другу. К 1970 г., в котором был выпущен полный определитель дрожжей дельфтской школы, количество видов, включенных в род Candida, возросло до 81, и он стал самым многовидовым родом среди дрожжей.( Азов а Л. Г.).
Второй по числу видов дрожжевой род Torulopsis существовал с 1895 г. и объединял аспорогенные дрожжи, не соответствующие описанию рода Candida только по одному признаку - отсутствию способности к образованию субстратного септированного или псевдомицелия. При росте на плотных средах мицелиальность настолько меняет облик колонии дрожжеподобных грибов, что на начальном этапе систематики дрожжей, когда основной упор делался именно на морфологические характеристики, этому признаку безусловно был придан статус родового. Однако с увеличением разнообразия описанных видов стало ясно, что способность к образованию псевдомицелия крайне ненадежный, сильно варьирующий в зависимости от штамма и от условий культивирования признак, имеющий низкую таксономическую ценность. В связи с этим в 1978 г. было предложено объединить роды Candida и Torulopsis в один род. Это было осуществлено в следующем издании определителя дрожжей, где был представлен единый род Candida, включающий 196 видов и заведомо полифилетический. Наиболее вескими аргументами полифилетичности рода были обнаружения совершенных стадий для некоторых видов Candida, которые, как оказалось, соответствовали различным родам известных аскоспоровых дрожжей. Такие пары анаморфа - телеоморфа включали, например Candida famata - Debaryomyces hansenii, Candida pulcherrima - Metschnikowia pulcherrima, Candida robusta - Saccharomyces cerevisiae и др. В 1966 г. новозеландская исследовательница Ди Менна описала три новых вида Candida gelida, Candida nivalis, Candida frigida, выделенные ею из антарктических почв. Всего несколько лет спустя у этих дрожжей также были обнаружены совершенные стадии, которые свидетельствовали об их принадлежности к базидиальным грибам. Таким образом, род Candida оказался группой несовершенных дрожжей, объединяющей анаморфы как аскомицетов, так и базидиомицетов.( И.М. Грачёва, Л.А. Иванова. В.М. Кантере.).
После доказательства полифилетической природы таких крупных дрожжевых родов, как Candida, в зимологии начался активный поиск признаков, которые могли бы дифференцировать анаморфы аско- и базидиомицетов. К настоящему времени в систематике дрожжей используется целый набор таких признаков аффинитета, благодаря которым все дрожжи удается четко разбить на две группы - аскомицетовые и базидиомицетовые, независимо от телеоморфного или анаморфного состояния культуры.