11014 (684974), страница 3
Текст из файла (страница 3)
Для оптимизации выхода продуктов, выделяемых в среду, важно усилить биосинтетическую способность клеток бактерий, а метод культивирования с подпиткой позволяет продлить вторую фазу роста и повысить выход внеклеточных метаболитов. Ограничение скорости поглощения субстрата скоростью его доставки оказывается способом преодоления «катаболитной репрессии» образования продукта. При производстве пекарских дрожжей потребление кислорода регулируется скоростью добавления сахара.
Метод периодических культур с подпиткой использовали при культивировании рекомбинантного штамма Escherichia coli для получения аналога человеческого коллагена. Культура с подпиткой оказалась наиболее эффективным путём для достижения высокой плотности клеток и высокой продуктивности [27].
В периодическом режиме с подпиткой концентрированным субстратом исследовалась деструкция фенола при совершенствовании процесса обезвреживания токсичных стоков ксенобиотиков с использованием гибридной системы очистки с совмещением процесса химического и биологического окисления по месту и времени [28].
Периодическая культура с добавлением источников питания, кроме того, моделирует некоторые природные микробные системы, как, например, инфекцию мочевых путей. Теория такой культуры показывает, что она должна иметь важное и уникальное применение в управлении ферментационными процессами [25].
Глава 2. Материалы и методы
2.1 Условия культивирования
Штамм LPM-4 стерильно пересевали на скошенные косяки ЭДТА-содержащего агара и выдерживали в термостате 5 суток. Для получения инокулята осуществляли смыв культуры с косяков, засевали в жидкую среду с ЭДТА и культивировали 3-4 суток. После чего инокулят в количестве 10 мл переносили в стерильные 750-мл колбы с 200 мл стерильной жидкой среды и культивировали в течение 10 суток на качалке при 150 - 200 об/мин при температуре 28º- 30ºС.
Опыт включал два этапа. Эксперимент первого этапа состоял из 8 вариантов (рис. 6), а эксперимент второго этапа – из 10 вариантов (рис. 7).
ЭДТА
Добавление глюкозы
до посева
1 сут
2 сут
3 сут
4 сут
5 сут
6 сут
Рис. 6. Схема эксперимента первого этапа опытов
ЭДТА
ЭДТА
ЭДТА
ЭДТА
ЭДТА
глюкоза
глюкоза
глюкоза
ЭДТА+
глюкоза
Рис. 7. Схема эксперимента второго этапа опытов
2.2. Методика приготовления питательных сред
При культивировании штамма использовали среды с ЭДТА.
Твердая питательная среда используется для получения свежей культуры штамма.
Жидкую питательную среду применяли для получения посевного материала и для периодического культивирования. Твердую питательную среду готовили, как жидкую, с добавлением 3% агара.
Приготовление жидкой питательной среды
1) MgSO4*7 H20 10 мл/л
2) CaCl2*2 H2O 20 мл/л
3) KH2PO4 + NaH2PO4*12 H2O 10 мл/л
4) EDTA 10 мл/л
5) Микроэлементы 1 мл/л
(доводили до рН= 4,2) + 5,6 г/л ЭДТА:
FeCl2*4 H2O 1,5 г/л
H3BO3 0,06 г/л
MnCL2*6 H2O 0,1 г/л
CaCl2*6 H20 0,12 г/л
ZnCl2 0,07 г/л
NiCl2*6 H20 0,025 г/л
CuCl2*2 H2O 0,015г/л
Na2MoCl4 0,025 г/л
6) Витамины
Пиридоксин 20 мг
Тиамин 10 мг
Рибофлавин 10 мг
Никотиновая кислота 10 мг
Р - аминобензойная кислота 10 мг
Липоевая кислота 10 мг
Никотинамид 10 мг
Витамин В12 10 мг
Биотин 4 мг
Фолиевая кислота 4 мг
Растворяли все компоненты в 200 мл воды, стерилизовали при 0,5 атм. 30 минут и добавляли в жидкую питательную среду в количестве 1мл/л.
Компоненты питательных сред взвешивали на технических и аналитических электронных весах и растворяли в дистиллированной воде. Опыт по приготовлению питательных сред показал, что ее удобно готовить из заранее стерилизованных концентрированных растворов.
2.3. Методы анализа.
Пробы из колб отбирали один раз в сутки и проводили измерения рН, биомассы, концентрации глюкозы, ЭДТА и аммония.
Биомассу определяли спектрофотометрически на приборе Specol 221 (Germany) при 546 нм, после подкисления анализируемой пробы 5% раствором НNO3 до рН=2,0 для растворения солей, выпадающих в осадок в процессе культивирования. Содержание биомассы рассчитывали на основании оптической плотности клеточной суспензии используя раннее построенную калибровочную кривую.
Концентрацию ЭДТА определяли высокоэффективной жидкостной хроматографией на хроматографе HPLC (Waters. Great Britan), оснащенном колонкой Nukleosil 100 (Machery und Nagel, Germany) при 285 нм. В качестве элюента использовали раствор, содержащий Fe(NO3)3* 9H2O 0,5 г/л, бромид тетрабутиламмония 0,4 г/л, HNO3 (65%) 0,8 мл, рН 2,1. Концентрацию ЭДТА рассчитывали, используя калибровочную кривую
Концентрацию глюкозы определяли энзиматически с использованием реактива Глюкоза ФС “ДДС” (“Диакон”). Принцип метода: глюкозооксидаза катализирует окисление β-D-глюкозы кислородом воздуха с образованием эквимолярных количеств глюколактона и перекиси водорода. Пероксидаза катализирует окисление хромогенных субстратов перекисью водорода в присутствии фенола с образованием окрашенного соединения, интенсивность окраски которого прямо пропорциональна концентрации глюкозы в пробе и измеряется фотометрически при длине волны 500 нм. Состав реагента: буферно-ферментный раствор, который содержащит калий фосфорнокислый -250 ммоль/л, фенол - 5 ммоль/л, 4-аминоантипирин - 0,5 ммоль/л, глюкозооксидазу - 10 000 Е/л, пероксидазу - 1000 Е/л. Пробы центрифугировали при 8 000 об/мин в течение 6 минут. Затем отбирали 20 мкл надосадочной жидкости и добавляли 2 мл реагента. Пробы перемешивали и инкубировали при комнатной температуре в течение 20 минут. Затем измеряли оптическую плотность при 500 нм. Содержание глюкозы определяли по калибровочному графику.
Содержание ионов аммония определяли потенциометрическим методом с помощью ионселективного электрода “Эком-NH4”. Метод анализа заключается в измерении величины равновесного потенциала ионселективного электрода, погруженного в раствор анализируемого иона. Потенциал измеряют относительно электрода сравнения, с помощью иономера Экотест - 120 (ИЭЛРАН НПП ЭКОНИКС). Погружали в раствор электрод “Эком-NH4” и электрод сравнения и измеряли значение равновесного потенциала.
2.3.1. Вычисление энергетического выхода роста штамма LPM-4
Энергетический выход роста штамма LPM-4 вычисляли на основании теории материально-энергетического баланса роста микроорганизмов. Согласно этой теории доступными называются электроны, которые акцептируются свободным кислородом при окислении органического материала с образованием углекислого газа и воды. [29].
Содержание доступных электронов (ДЭ) в органических соединениях удобно выражать в расчёте на один атом углерода, то есть как степень восстановлености углерода (γ).
Для соединения СНрОnNq величина степени восстановленности углерода вычисляется по формуле:
=4+p2n3q
Цифра 4 означает число ДЭ углеродного атома, к ней прибавляются ДЭ водорода, число которых равно числу p, приходящихся на один атом углерода. Из этой суммы вычитаются электроны энергетически обесцененные кислородом. Их число равно удвоенному числу атомов кислорода n , приходящихся на один атом углерода, так как у кислорода валентность равна 2. Из полученной разницы вычитается утроенное число атомов азота q , так как валентность азота равна 3, а энергетическое состояние электронов, связанных с азотом, не меняется в процессе роста.
Приведём уравнение количественной связи энергетического баланса с показателем материального баланса, как выход по субстрату Ys .
Энергетический выход (η) характеризует долю энергии субстрата, перешедшую в биомассу.
= в в/ s s Ys ,
где в восстановленность углерода в биомассе ;
s восстановленность углерода в субстрате ;
σs – доля (по массе) углерода в органическом субстрате;
σв – доля (по массе) углерода в биомассе;
в в/ s s отношение энергосодержания равных по весу количеств биомассы и субстрата;
в в = 2, для бактерий не синтезирующих липиды;
Ys выход клеток по массе, г/г;
Выход клеток по массе Y:
Yx/s = Х / S ,
где Х- концентрация биомассы, г/л;
S- количество потребленного субстрата, г/л.
Выход клеток по массе из ЭДТА (YЭДТА) рассчитывали как отношение биомассы, образованной из ЭДТА, к количеству потребленной ЭДТА. А выход клеток по массе из глюкозы рассчитывали как отношение биомассы, образованной из глюкозы, к количеству потребленной глюкозы.
Теоретический предел для энергетического выхода роста =1, так как в биомассе не может быть больше энергии, чем в использованном субстрате.