10991 (684972), страница 3
Текст из файла (страница 3)
Проведенные А.Е. Браунштейном и Э.Снеллом модельные эксперименты показали, что избирательный разрыв только одной из этих связей с образованием карбаниона, определяется особенностями строения активного центра фермента. Эти представления получили подтверждения при исследовании очищенных фосфопиридоксалевых ферментов. В 1966 году Донатан выдвинул и теоретически обосновал важное положение о том, что в альдимине, фиксированном в активном центре фермента, должна разрываться та из связей у α – углеродного атома, которая ориентирована перпендикулярно к плоскости пиридинового кольца пиридоксальфосфата. При такой ориентации энергия, необходимая для разрыва связи, минимальная вследствие перекрывания электронной орбитали связи с сопряженной π – системой кофермента ( σ – π - перекрывание). Донатан предположил, что конформация может контролироваться апоферментом, возможно с помощью связывания карбоксилат – иона, а также, что имин может принимать одну из трех возможных конформаций/29/.
Здесь прямоугольником обозначена плоскость пиридинового кольца, вертикальной линией изображена σ – связь. Конформамация (1) благоприятствует переаминированию.
Методами спектрального анализа было установлено, что альдегидная группа связанного в активном центре пиридоксальфосфата образует так называемое “внутреннее” основание Шиффа с ε- NH2 – группой остатка лизина в белке. Из этого следует, что на начальном этапе каталитической реакции α – аминогруппа субстрата вытесняет ε- NH2 – группу лизина из связи с коферментом (стадия трансальдиминирования). На основании изучения спектральных, химических и кинетических свойств аспартат – трансаминазы был сделан вывод о том, что как прямая, так и обратная реакция переаминирования состоят из восьми стадий; интермедиаты, возникающие на этих стадиях, представлены на рисунке 2/27,28/.
На первом стадии происходит присоединение к ферменту субстратной аминокислоты с образованием нековалентного комплекса Михаэлиса. Далее один из протоков аминогруппы субстрата переходит на атом азота внутренней иминной связи (стадия 2); в результате аминогруппа приобретает нуклеофильные свойства, необходимые для атаки на атом С-4' кофермента. Эта атака приводит к образованию промежуточного тетраэдрического соединения (геминального диамина, стадия 3); за этим следует освобождение ε- NH2 – группы остатка лизина из связи с пиридоксальфосфатом и возникновение "внешнего" или субстратного альдимина (стадия 5), одной из форм которого является хинолоид показанный на рис.2. Последующее протонирование атома С-4' дает кетимин (стадия 6), при гидролизе которого образуется ПМФ – форма фермента и оксокислота (стадии 7 и 8). Далее реакция идет в обратном направлении между ПМФ – формой трансаминазы и другой ококислотой и приводит к регенерации ПЛФ – формы ("внутреннего" альдимина) и образованию новой аминокислоты.
Таким образом, реакции переаминирования являются обратимыми и универсальными для всех живых организмов. Пиридоксальфосфат в этих реакциях выполняет роль переносчика аминогруппы и в конечной стадии освобождается и может вновь вступить в ферментативный процесс.
Рисунок 2 - Основные интермедиаты, образующиеся в ходе реакции переаминирования.
а – внутренний альдимин;
б – нековалентный комплекс Михаэлиса;
в – то же, что σ, но атом иминного азота протонирован;
г– геминальный диамин;
д– внешний альдимии;
е - хинолоид;
ж – кетимин;
з – карбиноламин;
и- пиридоксаминфосфат.
1.2.4 Биологическая роль трансаминаз
Аминокислоты, не использованные для синтеза белков и других производных, не накапливаются в организме в больших количествах. Они подвергаются различным ферментативным превращениям и, в конечном счете, распаду /32/. Важную роль в азотистом обмене играют процессы перехода одних аминокислот на другие, в результате ферментативных реакций переаминирования. При этом происходит обратимый перенос NH2 – группы от L – аминокислоты на L – кетокислоту без промежуточного образования аммиака. Таким образом, в реакции переаминирования участвуют L – аминокислота как донор и L – кетокислота как акцептор аминогруппы. Эти реакции катализируются особыми ферментами трансаминазами. Коферментом трансаминаз является пиридоксаль – 5׳ – фосфат, который и является промежуточным переносчиком аминогруппы от аминокислоты на кетокислоту/27/.
Широкое распространение трансаминаз в животных тканях, у микроорганизмов и растений, их высокая резистентность к физическим, химическим и биологическим факторам, абсолютная стереохимическая специфичность по отношению к L - и Д – аминокислотам, высокая каталитическая активность в процессах переаминирования послужили предметом детального исследования роли этих ферментов в обмене аминокислот/33/. Тип катализируемой химической реакции в сочетании с названием субстрата служит основой для систематического наименования ферментов. Согласно Международной классификации трансаминазы относят к 2 классу трансфераз, 4 подклассу – аминотрансферазы; наименование их составляется по форме «донор – транспортируемая группа – трансфераза» /34/. А. Е. Браунштейн выдвинул гипотезу о возможности существования в живых тканях не прямого пути дезаминирования аминокислот через реакции переаминирования, названного им трансдезаминированием. Основой для этой гипотезы послужили данные о том, что из всех природных аминокислот в животных тканях с высокой скоростью дезаминируются только L – глутаминовая кислота. Согласно этой теории большинство природных аминокислот сначала реагируют с L – кетоглутаровой кислотой в реакции переаминирования с образованием глутаминовой кислоты к соответствующей кетокислоте/30/. Образовавшаяся глутаминовая кислота подвергается окислительному дезаминированию под действием глутаматдегидрогеназы. Механизм трансдезаминирования можно представить в виде следующей схемы /13/:
R
1- CH (NH2)-COOH L-кетоглутарат НАДН2 + NH3
R
1- CO- COOH L-глутамат НАД + Н2О
трансаминаза глутаматдегидрогеназа
Обе реакции (переаминирование и дезаминирование глутаминовой кислоты) являются обратимыми, создаются условия для синтеза любой аминокислоты, если в организме имеются соответствующие L – кетокислоты. Организм животных и человека не обладает способностью синтеза углеводородного скелета (L - кетокислот) так называемых незаменимых аминокислот, этой способностью обладают только растения и многие микроорганизмы.
В живых организмах осуществляется синтез природных аминокислот из L – кетокислот и аммиака, этот процесс был назван А. Е. Браунштейном трансреаминированием. Сущность его сводится к восстановительному аминированию L – кетоглутаровой кислоты, с образованием глутаминовой кислоты, и к последующему переаминированию глутамата с любой L – кетокислотой. В результате образуется L – аминокислота, соответствующая исходной кетокислоте, и вновь освобождается L – кетоглутаровая кислота, которая может акцептировать новую молекулу аммиака/35/.Схематически роль трансаминаз в дезаминировании в биосинтезе аминокислот можно представить в следующем виде/28/:
L-Аминокислота Пиридоксальфосфат L-Глутамат НАД
R
1-CH(NH2)-COOH O=CH-ПФ HOOC-(CH2)2-CH(NH2)-COOH НАДФ
Т
рансаминаза НАДФН2
R
1-C-COOH H2N-CH2-ПФ HOOC-(CH2)2-C(NH)-COOH НАДН2
L-кетокислота Иминоглутарат
Пиридоксаминфосфат Н2О
HOOC-(CH2)-C-COOH
L-кетоглутарат NH3
Схема показывает, что трансаминаза катализирует опосредованно через глутаматдегидрогеназу как дезаминирование природных аминокислот (стрелки вниз), так и биосинтез аминокислот (стрелки вверх).
Путем переаминирования большинство аминокислот может превращаться одна в другую или заменяться соответствующей кетокислотой. Поэтому реакции переаминирования - один из важнейших процессов при биосинтезе заменимых аминокислот. Особенно легко переаминируются глутаминовая и аспарагиновая кислоты, так как соответствующие им трансаминазы имеют очень высокую активность. Кетокислоты, получаемые из этих аминокислот (L – кетоглутаровая и щавелевоуксусная кислоты), осуществляют связь углеродного и белкового обмена /36/.
Таким образом, трансаминазы играют важную роль в азотистом обмене, участвуют в биосинтезе аминокислот. Биологический смысл реакций переаминирования аминокислот состоит в том, чтобы объединить аминогруппы распадающихся аминокислот в составе молекул одного типа аминокислоты, а именно глутаминовой /31/.
Трансаминазы относятся к универсально-распространенным ферментам. В тканях различных органов содержится значительное количество трансаминаз, в сотни и тысячи раз превышающее уровень активности их в сыворотке крови. При электрофорезе они мигрируют с L - и γ - глобулинами. Особенно высокой активностью АСТ (КФ.2.6.1.1.) отличаются сердце, печень, мышечная ткань, почки, поджелудочная железа (перечень представлен в порядке убывания активности АСТ). АЛТ (КФ.2.6.1.2.) в наибольших количествах обнаруживается в печени, в связи с этим ее называют печеночной трансаминазой, затем в поджелудочной железе, сердце, скелетных мышцах.
Значительные различия в активности трансаминаз в отдельных органах и в сыворотке крови определяют его важное клиническое диагностическое значение, так как при поражении ткани возникает резкий скачок уровня активности трансаминаз в крови. Наибольшее значение представляет повышение активности АСТ при инфаркте миокарда. Степень повышения отражает массовость поражения сердечной мышцы и тяжесть инфаркта. Характерна динамика активности АСТ при инфаркте миокарда: начало подъема - через несколько часов после возникновения заболевания, максимальный подъем – к концу первых суток, нормализация возможна в течение первой недели болезни. При других заболеваниях сердца повышение активности АСТ либо не происходит, либо носит умеренный характер. Однако активность АСТ повышается и при поражении других органов и тканей. Многие авторы склонны рассматривать определение АСТ как ценный тест при проведении дифференциальной диагностики между инфарктами сердца и легких. Основанием к этому служит значительно более высокая (в 50 раз) активность фермента в мышце сердца, в сравнении с тканью легкого. Активность трансаминаз в сыворотке крови является одной из наиболее ценных и самым распространенным в клинической практике показателем поражения печени, характеризующие протекающие в ней цитолитические процессы /37/.
Повышение активности аминотрансфераз, и, прежде всего АЛТ, выявляется уже в ранний, инкубационный, преджелтушный период вирусного гепатита, что имеет принципиальное эпидемиологическое значение для выявления больного еще до появления желтухи. В результате значительного повышения активности АЛТ у больных вирусным гепатитом снижается коэффициент Де Ритиса (АСТ: АЛТ) ниже 1 при норме 1 – 3, а при остром инфаркте миокарда, напротив, резкое возрастание этого коэффициента /38/.