ROM-0132 (682887), страница 2

Файл №682887 ROM-0132 (Металлургия титана) 2 страницаROM-0132 (682887) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Подготовка сырья.

Титановые шлаки, получающиеся в результате руднотермической восстановительной плавки железо-титановых концентратов, дробят в щековой и конусной дробилках. После измельчения шлаки размалывают в шаровых мельницах. Размолотый шлак должен содержать фракций +0.1 мм не более 10% (по массе) и металлического железа менее 4%. После удаления с помощью магнитной сепарации металлического железа размолотый шлак поступает на хлорирование (при использовании солевых хлораторов или аппаратов кипящего слоя) или в отделение подготовки шихты (брикетирование, агломерация, окомкование) при использовании шахтных хлораторов с подвижным слоем.

Аппараты для хлорирования. Хлорирование в шахтных электропечах

и шахтных хлораторах с подвижным слоем.

Шахтная электропечь. На первом этапе развития титановой промышленности в качестве основного промышленного аппарата использовались шахтные электропечи (ШЭП) для производства магния. В титановом производстве их конструкция подвергалась значительным изменениям. Шахтная электоропечь состоит из двух зон – верхней и нижней. В верхнюю зону через свод печи загружают шихту; в нижнюю зону,

оборудованную электродами, загружают угольную насадку и подают хлор. Шахтные электропечи незаменимы при использовании титаносодержащего сырья с компонентами, хлориды которых низколетучи (например, перовскиты, титаномагнетиты и др.). Шахтная электропечь сыграла важную роль создании и развитии отечественной титановой промышленности.

Хлоратор с подвижным слоем. В связи с появлением титаносодержащих шлаков с низким содержанием в них CaO и MgO шахтные электропечи вытеснены более совершенным аппаратом – хлоратором с подвижным слоем. Основное отличие его от ШЭП – отсутствие электрообогрева, сложной насадочной зоны и наличие в нижней его части герметичного разгрузочного устройства для непрерывного удаления непрохлорированного остатка.

Последнее обстоятельство позволяет коренным образом улучшить газодинамические параметры и резко интенсифицировать процесс, так как температурный режим в хлораторе и аппаратах конденсационной системы легко регулируется количеством подаваемого хлора, загрузкой брикетов и выгрузкой непрохлорированного остатка. Это в значительной степени упрощает процесс и облегчает его автоматизацию.

Уровень шихты в хлораторе поддерживают в интервале 1.2-3.5 м. Для хлорирования применяют брикеты или гранулы. Многочисленные способы приготовления гранулированной шихты можно разделить на два принципиально отличающихся метода: 1) углеродистый восстановитель и связующее дозируются с двух-трехкратным избытком, вследствие чего после прокалки образуются брикеты или гранулы с углеродистым каркасом; 2) компоненты шихты дозируются в строго стехиометрическом соотношенни и подготавливаются таким образом, что в процессе хлорирования они полностью сгорали.

Хлорирование гранул с сохраняющейся формой углеродистого брикета в фильтрующем (подвижном слое). Наиболее полно этот процесс описан Мак-Ферландом и Феттерролом и запатентован рядом авторов. Суть его заключается в том, что в шихту для хлорирования вводят двух-трехкратное количество углеродистого восстановителя и углесодержащего связующего по отношению к стехиометрически необходимому для связывания кислорода оксидов титананосодержащего сырья и хлоровоздушной смеси в расчете на образование оксида углерода CO.

Хлорирование в хлораторах с расплавом и аппаратах с кипящим слоем.

С переходом на сырье, содержащее значительное количество примесей, образующих низколетучие хлориды (лопариты, перовскиты, шлаки с высоким содержанием кальция), производительность указанных аппаратов резко падает. Поэтому и шахтные хлораторы наиболее эффективно можно использовать для хлорирования так называемых сухих титансодержащих материалов. Для хлорирования высококальциевого сырья, а так же других материалов, содержащих повышенные количества щелочноземельных элементов, выгоднее использовать хлоратор, в котором хлорирование осуществляется в жидкой ванне из расплавленных хлоридов щелочных и щелочноземельных металлов. Основные преимущества хлоратора с жидкой ванной перед другими аппаратами заключается в том, что конструкция его позволяет непрерывно выводить вместе с частью расплава непрохлорированный остаток и таким образом осуществлять практически непрерывный процесс. Кроме того, упрощается подготовка шихты: отпадает надобность в предварительном брикетировании материалов, так как в хлоратор можно загружать порошкообразную шихту.

Технология и аппаратура хлорирования титансодержащих материалов в расплаве щелочных и щелочноземельных хлоридов разработана М.К. Байбековым,

Э.П. Медведчиковым и другими под руководством С.П. Солякова.

В нижней части хлоратора имеются фурмы и газораспределительное устройство для подачи хлора; в боковые стенки вмонтированы угольные или графитовые электроды, внутри которых проходят стальные водоохлаждаемые штанги.

В верхней крышке хлоратора имеются отверстия для разливки расплава, загрузки шихты и патрубки для отвода парогазовой смеси. Расплав сливают через летки. Хлораторы могут быть одно- и многокамерными.

В качестве жидкой ванны используют хлориды щелочноземельных и щелочных металлов. Процесс хлорирования ведут в интервале 1000–1173К. Температура процесса определяется физико-химическими свойствами расплава – летучестью хлоридов, вязкостью, плавкостью. Шихту, состоящую из размолотого титансодержащего материала и кокса, загружают в расплав. В некоторых конструкциях компоненты шихты загружают шнековым питателем раздельно. Перед поступлением в хлоратор шихту сушат в сушилках до полного удаления влаги и летучих.

Теплоотводящие элементы, расположенные внутри хлоратора, позволяют отвести значительную долю тепла, образующегося при хлорировании, и тем самым, интенсифицировать процесс хлорирования. Возможность непрерывного обновления состава расплава и вывода из процесса непрохлорированного остатка обеспечивает постоянство его газодинамических характеристик и равномерную работу в течение всей кампании. Поскольку при хлорировании в расплаве кислород оксидов титансодержащего материала и анодного хлоргаза с углеродом образует в основном CO2, количество отходящих газов после хлоратора в расплаве значительно меньше, чем при хлорировании в псевдоожиженном или подвижном слое, что благоприятно влияет на работу конденсационной системы, так как при прочих равных условиях количество тепла, поступившего из хлоратора в аппараты конденсационной системы, уменьшается.

Конденсация и разделение продуктов хлорирования.

Под общепринятыми и широко вошедшими в промышленную практику производства титана терминами «конденсационная система», «конденсация» подразумевается целый комплекс аппаратов, технологических операций и процессов, связанных с получением из сложной по составу и физико-химическим свойствам парогазовой смеси (ПГС) жидкого и четыреххлористого титана.

Теоретически технология отвода тепла, перевод компонентов из парообразного состояния в конденсированное, разделение газообразных, жидких, и твердых продуктов, выделение и очистка четыреххлористого титана принципиально не отличаются от известных процессов и аппаратов, используемых в химической, нефтехимической и металлургической промышленности и описанных в специальных курсах и монографиях. Однако специфические свойства четыреххлористого титана и сопутствующих ему хлоридов, а именно: высокая химическая активность, токсичность, большое различие в химических свойствах, склонность к комплексообразованию, диспропорционированию, диссоциации в парообразном и конденсированном состоянии – создают серьезные трудности аппаратурного и технологического характера при разработке и практической реализации теплообменных и массообменных процессов и аппаратов. И хотя создание и развитие хлорной металлургии титана и редких металлов явилось причиной появления большого числа работ по химии парообразного состояния – совершенно нового направления в химии – проблема как в научном, так и практическом плане далека еще от своего полного решения. Технологические пределы конденсации и разделения продуктов хлорирования остаются по-прежнему наиболее узким местом в технологическом цикле производства четыреххлористого титана.

К физико-химическом и термодинамическом отношениях парогазовая смесь, выходящая из хлораторов с температурой 900–1700К, представляет сложную многокомпонентную систему, состоящую из газообразных TiCl4, VOCl3, VCl4, SiCl4, CCl4, S2Cl2, C6Cl6, SiOCl6, Si3O2Cl8, Si4O3Cl10, SnCl4, MoCl5, MoO2Cl2, CrO2Cl2, AlCl3, FeCl3, CrCl4, FeCl2, ZrCl4, жидких NaCl, KCl, MnCl2, MgCl2, CaCl2 хлоридов, твердых продуктов C, TiO2, SiO2, Al2O3, частичек шлака и кокса, а также газов CO, CO2, HCl, H2, Cl2.

В рабочем интервале температур (900–1800К) компоненты парогазовой смеси могут вступать между собой в сложные взаимодействия химического характера. С достаточной для практических целей степенью приближения можно рассматривать парогазовую смесь в состоянии сложного термодинамического равновесия. Наиболее простым примером гетерогенного равновесия является равновесие чистого конденсированного вещества со своим насыщенным паром. В соответствии с правилом фаз в однокомпонентной системе с изменением температуры в условиях моновариантного равновесия могут существовать только две фазы (равновесие трех фаз в однокомпонентной системе возможно только в нонвариантной точке). Условия равновесия между фазами определяется уравнением Клаузиуса-Клапейрона

dp/dt=dH1,2/T(V2–V1)

Известны различные варианты аппаратурного оформления процесса конденсации: раздельная конденсация твердых и жидких хлоридов, совместная конденсация, комбинированная конденсация.

Раздельная конденсация.

При раздельном способе конденсации парогазовую смесь охлаждают в первых по ходу аппаратах сначала до точки росы наиболее высококипящего жидкого хлорида, при этом все более высококипящие хлориды конденсируются. После этого парогазовая смесь со взвешенными в ней твердыми хлоридами поступает в аппараты для разделения твердых и парообразных хлоридов. После отделения твердых хлоридов парогазовая смесь поступает в конденсаторы низших хлоридов.

Совместная конденсация.

При совместной конденсации твердых и жидких хлоридов парогазовая смесь из хлоратора поступает непосредственно в конденсаторы смешения–«оросительные конденсаторы», где орошается охлажденным жидким четыреххлористым титаном.

В качестве конденсаторов смешения можно применять также барометрические конденсаторы, полые и насадочные скрубберы, в верней части которых вмонтировано разбрызгивающее устройство (форсунки, тарелки, турбины и др.). Из оросительных конденсаторов парогазовая смесь поступает в хвостовые конденсаторы для окончательного доулавливания четыреххлористого титана, а образованная твердыми хлоридами пульпа, направляется в хлоратор или сухие конденсаторы. При таком способе конденсации все тепло, выделенное парогазовой смесью при ее охлаждении и конденсации, отводится только четыреххлористым титаном.

Очистка технического четыреххлористого титана.

Четыреххлористый титан, получаемый в промышленности хлорированием титансодержащих материалов в присутствии углеродсодержащего восстановителя, содержит значительное количество растворенных и взвешенных примесей, которые можно условно разделить на три основные группы: газы: HCl, CO2, COCl2, NOCl, N2, O2, Cl2, COS и др., сконденсированные хлориды CCl4, CHCl3, Cr2O2Cl2, CCl3COCl, VOCl3, SiCl4, SiOCl6, SOCl2, SO2Cl2, твердые хлориды и оксихлориды FeCl3, FeCl2, TiOCl2, MgCl2, C6H6, POCl3, AlCl3.

Отделение твердых взвесей. Четыреххлористый титан от твердых взвесей очищают отстаиванием и фильтрацией, осуществляемыми в герметичных отстойниках или в фильтрах различной конструкции. В качестве фильтрующей основы используют керамические, металлокерамические пористые патроны и пластины, стеклоткани, асбестовую набивку, кислотостойкие ткани из искусственного волокна и др.

Химическая очистка TiCl4 от окситрихлорида ванадия. Наибольшее распространение получили способы с применением в качестве реагентов медного порошка, сероводорода, низших хлоридов титана.

Очистка медным порошком – наиболее эффективный и универсальный метод,

так как, кроме ванадия, медный порошок удаляет серу и частично органические соединения. Он сравнительно прост в аппаратурном оформлении, при этом медный порошок не образует соединений, загрязняющих TiCl4.

В зарубежной промышленной практике известен также сероводородный метод очистки. Суть этого метода состоит в том, что растворимые в TiCl4 соединения ванадия и алюминия энергично взаимодействуют с H2S, образуя нерастворимые осадки. Этот метод относительно дешев по издержкам производства, но сложен в аппаратурном оформлении.

Ректификация является наиболее эффективным методом из наиболее распространенных методов разделения и очистки веществ с заметно различающимся давлением паров при температуре процесса.

Металлотермическое производство титана.

Магниетермическое производство титана.

Магниетермическое производство титана основано на реакции

TiCl4+2Mg=Ti+2MgCl2.

Первые представления о механизме восстановительного процесса сложились под влиянием результатов лабораторных исследований Уотмана и др. Было установлено, что первоначально образование губки начинается на стенке реактора на уровне зеркала расплавленного магния. С течением времени происходит рост губки вверх и к центру реактора. Было высказано мнение, что основное взаимодействие происходит на поверхности губки между TiCl4 и жидким магнием, который за счет капиллярных сил диффундирует в губчатой массе, выходя на ее поверхность. Образующийся MgCl2 стекает по поверхности вниз на дно аппарата. В работе определяющая роль поверхностных явлений была обоснована опытами, в которых в реакционное пространство аппарата в вертикальном положении помещали стальные стержни: часть из них была приварена к дну реактора и выступала над уровнем жидкого магния. Другая часть была приварена к крышке реактора так, чтобы их торцы не касались уровня магния. Губка титана образовалась только в тех стержнях, которые выступали из магния над расплавом.

Характеристики

Тип файла
Документ
Размер
91 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6511
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее