95112 (682504), страница 4

Файл №682504 95112 (Лазеры и их применение в медицине) 4 страница95112 (682504) страница 42016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

П ерсонал, работающий с лазерными установками, должен пройти специальную подготовку и иметь соответствующую квалификацию. Все лица, работающие с лазерным излучением, регулярно, не менее одного раза в год, должны подвергаться медицинскому обследованию, включающему осмотр офтальмологом, терапевтом и невропатологом. Кроме того, необходим клинический анализ крови с проверкой уровня гемоглобина, числа лейкоцитов и лейкоцитарной формулы. Проводят также основные печеночные пробы.

При аккуратном соблюдении изложенных выше правил опасность повреждения органов, тканей и биологических сред человеческого организма практически отсутствует. Так, за 10-летний период работы с различными лазерными установками, которыми в общей сложности было выполнено несколько тысяч различных операций, мы не наблюдали ни одного случая поражения глаз и кожи лазерным излучением, а также изменений в состоянии здоровья ни у одного из сотрудников учреждения, связанных с работой на лазерных установках.

5 ПРОНИКНОВЕНИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В БИОЛОГИЧЕСКИЕ ТКАНИ

Закономерности, управляющие проникновением излучения в ткани, имеют непосредственное отношение к проблеме механизма биологического действия лазерной радиации. Одна из причин того, что излучение проникает на ограниченную глубину, состоит в поглощении лазерного излучения биологическими тканями, а оно является, за редким исключением, обязательным начальным звеном, которое предшествует цепи изменений, развивающихся в облученном организме. Глубина проникновения лазерного излучения в ткани весьма важна в практическом отношении, так как она является одним из факторов, определяющих границы возможного применения лазеров в клинике.

Поглощение — не единственный процесс, приводящий к ослаблению лазерного излучения при прохождении его через биологические ткани. Одновременно с поглощением излучения происходит ряд других физических процессов, в частности отражение света от поверхности между двумя средами, преломление при прохождении границы, разделяющей две оптически разнородные среды, рассеяние света частицами ткани и др. Таким образом, можно говорить об общем ослаблении излучения, включающем, помимо поглощения, потери за счет других явлений, и об истинном поглощении излучения. При отсутствии рассеяния поглощение в среде характеризуется двумя параметрами: поглощательной способностью и глубиной поглощения. Поглощательная способность определяется как отношение энергии, поглощенной в среде, к энергии излучения, падающей на поверхность среды. Это отношение всегда меньше 1, так как излучение частично проходит сквозь нее. Глубина поглощения характеризует пространственное распределение поглощенной энергии в среде. В простейшем случае (экспоненциальное затухание света в веществе) она равна расстоянию, на котором мощность излучения уменьшается в 2,718 раза по отношению к мощности излучения на поверхности среды. Величина, обратная глубине поглощения, называется коэффициентом поглощения. Он имеет размеренность см-1. Если наряду с поглощением происходит рассеяние света, то расстояние, на котором в результате совместного действия этих процессов излучение затухает в раз, представляет собой глубину ослабления или проникновения излучения, а обратная ей величина — коэффициент ослабления, также имеющий размерность см-1.

При теоретическом рассмотрении вопросов поглощения лазерного излучения тканями для упрощения задачи можно принять, что излучение представляет собой плоскую волну, падающую на ровную поверхность объекта, а коэффициент поглощения на всем облучаемом участке одинаков и не зависит от интенсивности света. В этом случае энергия (мощность) излучения по мере увеличения глубины будет уменьшаться экспоненциально, и распределение ее выражается уравнением:

Р=Р0ехр (1)

где Р — мощность излучения на глубине ; Ро — мощность излучения, падающего на поверхность ткани; — коэффициент поглощения ткани (пренебрегаем потерями на отражение света от гкани).

В реальных условиях при облучении биологических объектов такое простое соотношение между толщиной слоя ткани и количеством поглощенной энергии нарушается, например за счет различий в коэффициентах поглощения разных участков облучаемой ткани. Так, коэффициент поглощения меланиновых гранул сетчатки глаза в 1000 раз больше, чем окружающей ткани. Учитывая, что светопоглощение представляет собой молекулярный процесс, который в конечном счете зависит от концентрации поглощающих излучение молекул, величина поглощения на клеточном и субклеточном уровнях может значительно изменяться даже от органеллы к органелле. Наконец, поглощение является функцией длины волны, следовательно, коэффициент поглощения широко варьирует для лазеров, излучающих в различных областях спектра.

В ряде ранних исследований о величине поглощения биологических тканей судили на основании результатов измерений их светопропускания. При этом в большинстве случаев опыты были проведены с рубиновым и неодимовым лазерами. Так, при облучении рубиновым лазером мышей было установлено, что через кожу проникает от 45 до 60% энергии, а через кожу и подлежащие мышцы — от 20 до 30%. Разработке метода определения коэффициентов пропускания и отражения тканей были посвящены исследования Г. Г. Шамаевой и др. (1969). Данные, полученные с помощью этого метода при облучении крыс неодимовым лазером, были использованы для расчета коэффициента поглощения кожи, составившего 9,9 см-1.

Л. И. Дерлеменко (1969), М. И. Данко и др. (1972) с помощью интегрального фотометра определяли поглощение излучения неодимового лазера тканями мышц и печени крыс. Через слой ткани толщиной 1 мм при облучении мышц проходило 27— 32% излучения, а печени — 20—23%. Для слоев ткани толщиной 6 мм эти значения составили соответственно 3 и 1,5%.

Приведенные данные демонстрируют зависимость поглощения лазерного излучения от степени окрашенности ткани: обильно пигментированная ткань поглощает излучение интенсивнее, чем ткань мышцы. Та же закономерность проявлялась и в опытах по облучению рубиновым и неодимовым лазерами различных опухолей у животных. Наибольшее поглощение характерно для меланом вследствие наличия в них меланина.

А. М. Уразаев и др. (1978) сравнили степень ослабления излучения гелий-неонового (длина волны 632,8 нм) и аргонового (488 нм) лазеров при прохождении через различные участки тела живых депилированных крыс или через препараты, приготовленные из органов забитых животных. Прошедшее излучение измеряли с помощью фотоэлемента и полученные данные использовали для расчета глубины проникновения лазерного излучения. Почти во всех вариантах опыта излучение красной области спектра проникало на большую глубину, чем сине-зеленое, причем наиболее резко эта разница была выражена при прохождении через интенсивно васкуляризованные органы с обильным кровенаполнением.

Сравнение глубины проникновения в биологические ткани излучения азотного (длина волны 337,1 нм), гелий-кадмиевого (441,6 нм) и гелий-неонового (632,8 нм) лазеров проведено в серии исследований других авторов. Измерения были выполнены на срезах различных органов мышей с помощью двух методов; с применением фотометрического шара или светового зонда. В первом случае фотометрически определяли коэффициент отражения и коэффициент ослабления лазерного излучения в ткани, а последний позволял рассчитать глубину проникновения излучения; во втором в облучаемый образец ткани с противоположной стороны от лазерного луча соосно с ним вводили тонкий (диаметр 0,75 мм) стеклянный световод, соединенный с фотоумножителем. Отодвигая кончик световода на различные известные расстояния от точки падения луча на поверхность ткани и измеряя плотность светового потока, получали кривые распределения интенсивности лазерного излучения в ткани и определяли глубину его проникновения.

Оба примененных метода дали схожие результаты. Наибольшей проникающей способностью отличалось излучение гелий-неонового лазера, наименьшей — гелий-кадмиевого. Во всех случаях глубина проникновения не превышала 2—2,5 мм.

Интересная задача была поставлена в опытах, проведенных В. А. Дубровским и О. Г. Астафьевой (1979), в которых сравнивали величину поглощения красного излучения гемолизатом крови с различными физическими свойствами: поляризованного когерентного излучения гелий-неонового лазера; поляризованного некогерентного излучения лампы накаливания, пропущенного через поляроид и спектральные фильтры; неполяризованного и некогерентного излучения лампы накаливания, пропущенного только через спектральные фильтры. Было установлено, что пространственная когерентность не отражается на поглощении. Выраженное влияние на него оказывают ширина спектра и поляризационные свойства излучения: поляризованное излучение поглощается менее активно, чем неполяризованное.

Наряду с приведенными данными о поглощении биологическими тканями излучения лазеров, которые генерируют в ближней ультрафиолетовой (азотный), видимой (гелий-кадмиевый, аргоновый, гели й-неоновый, рубиновый) и ближней инфракрасной (неодимовый) спектральных областях, практически важной является информация о поглощении излучения СОз-лазера, генерирующего в инфракрасной области на длине волны 10 600 нм. Поскольку это излучение интенсивно поглощается водой, а последняя составляет около 80% массы большинства клеток, при воздействии на биологические ткани излучением СОг-лазера оно практически полностью поглощается поверхностными слоями клеток .

Как отмечалось выше, проникновение лазерного излучения в глубину тканей ограничено вследствие не только поглощения, но и других процессов, в частности отражения излучения от по-нерхности ткани. По данным Б. А. Кудряшова (1976), с. Д. Плетнева (1978) и др., отраженное белой кожей человека и животных излучение лазеров, генерирующих в ближней ультрафиолетовой и видимой областях спектра (азотный, гелий-кадмиевый, аргоновый, гелий-неоновый, рубиновый), составляет 30—40%; для инфракрасного излучения неодимового лазера эта величина не-(колько меньше (20—35%), а в случае более далекого инфракрасного излучения СОг-лазера она уменьшается приблизительно до 5%. Для различных внутренних органов животных величина коэффициента отражения света (633 нм) колеблется от 0,18 (печень) до 0,60 (мозг)

Вследствие ослабления лазерного излучения глубина его проникновения в биологические ткани не превышает нескольких миллиметров, и при практическом применении лазеров нужно исходить из этих условий. Однако наряду с изложенными материалами известны данные, позволяющие сделать более оптимистические выводы. Речь идет о том, что во всех рассмотренных выше исследованиях удалось оценить роль рассеяния излучения в глубине ткани. Когда, например, с помощью фотометрического шара определяли коэффициенты пропускания и отражения образца ткани, выявленная разница в интенсивности излучения, падавшего на поверхность образца и прошедшего сквозь него, представляла собой (за вычетом отраженного излучения) сумму потерь на поглощение и рассеивание, причем доля каждого из этих процессов оставалась неизвестной. В другом случае, когда интенсивность излучения, достигшего данной точки в глубине ткани, измеряли с помощью светового зонда, торец последнего воспринимал только излучение, которое падало «спереди» .На самом деле рассматриваемая точка внутри ткани освещается со всех сторон излучением, рассеянным частицами, окружающими ее. Следовательно, с помощью указанного метода получали заниженные показатели распределения интенсивности излучения по глубине, что не позволяло учесть рассеянный свет. Вместе с тем в интенсивно рассеивающих средах, каковыми являются биологические ткани, доля рассеянного излучения весьма значительна .

С учетом этих положений в серии обстоятельных исследований. Dougherty и соавт. (1975, 1978) была сделана попытка выяснить влияние светорассеивания на глубину проникновения излучения в ткани. Авторы с помощью фотоэлемента определяли долю светового излучения ксеноновой лампы (выделялась область 620—640 нм),прошедшего сквозь срезы различной толщины, которые были получены из перевивной опухоли молочной железы мышей или из их нормальных тканей. Полученные величины коэффициента светопропускания использовали для вычисления коэффициентов рассеяния (S) и поглощения (К) из соотношений, установленных P. Kubelka (1964) и F. Kottler (I960). Значения, полученные для опухолевой ткани, составляли S = 13,5 и К = 0,04, откуда видно, что доля рассеянного света намного превышает долю поглощенного. I

Во второй работе, проведенной в 1978 г. той же группой исследователей, были применены два метода, которые позволяли псе величины внутритканевой интенсивности света, как найденные без учета рассеивания, так и включающие его, получить прямым экспериментальным путем. В случае использования одного из методов в глубину свежеиссеченной опухоли (рабдомиоифкомы крыс) вводили волоконный световод толщиной 0,8 мм и его конец, выступающий из ткани, направляли луч гелий-неонового лазера мощностью 2 мВт. С противоположной стороны образца вводили другой световод, соединенный с фотометром. Приводя сначала световоды в соприкосновение, а затем раздвигая их па известные расстояния, измеряли интенсивность излучения, прошедшего сквозь слой ткани фиксированной толщины. Как и в описанных выше опытах, этот метод не позволял учесть рассеянный нет.

Вторая методика была актинометрической (фотохимической) и состояла в том, что в опухолевую ткань на определенную глубину вводили несколько капиллярных трубок диаметром 1 мм, заполненных раствором фоточувствительной смеси. Облучая затем образец ткани светом известной интенсивности с помощью лампы накаливания (длины волн более 600 нм), определяли количество продукта фотохимической реакции, которое было прямо пропорционально интенсивности света и являлось функцией глубины расположения трубок. Очевидно, при такой схеме проведения экспериментов на ход реакции влияло все излучение, дошедшее до данной точки в глубине ткани, в том числе и рассеянный свет. Данные, представленные на рис. 2, позволяют сопоставить результаты, полученные с помощью этих методов. Из графика видно, что интенсивность излучения в опухолевой ткани на одной и той же глубине, определенная актинометрическим способом, существенно выше той, которую устанавливали с помощью волоконнооптической техники. Так, из кривой актинометрических измерений видно, что на глубине 2 см в ткань еще проникает около 8% излучения, тогда как, согласно второй кривой, эта величина составляет менее 0,1% К

Таким образом, значительное преобладание рассеяния видимого света при прохождении его через биологические ткани над поглощением позволяет сделать заключение, что способность лазерного излучения проникать в ткани выше, чем принято считать. Если учесть возможность проведения лазерного излучения вглубь тканей с помощью волоконной оптики и последующее распределение его в толще облучаемого очага благодаря рассеянию, можно попытаться значительно раздвинуть рамки клинического применения лазеров.

Характеристики

Тип файла
Документ
Размер
2,23 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6761
Авторов
на СтудИзбе
282
Средний доход
с одного платного файла
Обучение Подробнее