diplom (675890), страница 3

Файл №675890 diplom (Построение графика функции различными методами (самостоятельная работа учащихся)) 3 страницаdiplom (675890) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

«Алгебра и начала анализа, 10 – 11 класс», авт. М.И Башмаков.

Тема

Основная цель

Графики тригонометрических функций

Изучить свойства и графики тригонометрических функций, учащиеся должны хорошо усвоить вид графиков тригонометрических функций.

Графики показательной и логарифмической функции

Изучить графики показательной и логарифмической функции

“Алгебра и начала анализа, 10 - 11”, авт. А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др.

Графики тригонометрических функций

Особое внимание нужно обратить на графическую интерпретацию свойств.Значительно расширит возможности учащихся в построении графиков функции рассмотрение вопроса о преобразовании графиков (параллельный перенос на заданный вектор, растяжение вдоль оси Ох), что позволит осознано строить графики гармонических колебаний

Применение производной к исследованию функции и построению её графика

Существенное внимание следует уделить решению разнообразных задач связанных с иследованием функции.

“Алгебра и начала анализа, 10 - 11”, авт. Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др.

Тема

Основная цель

Степенная, покозательная, логарифмическая функции их свойства и графики

Познакомить учащихся с графиками этих функций. Познакомить их с многообразием свойств и графиков степенной функции в зависимости от значений оснований и покозателей степени. Особое внимание уделяется иллюстрации свойств функции по графику.

Тригонометрические функции и их графики.

Научит учащихся строить графики тригонометрических функций. Учащиеся должны научится выполнять эскизы графиков, используя эти свойства, а также устонавливать эти свойства по графику.

Применение производной к построению графиков функций

При изучении графика функций полезно показать построение графиков функций, которой не являются неприрывной на всей области определения. И особенности построения графиков четной и не четной функции.

Программа для школы с углубленным изучением математики.

«Алгебра, 8», авт. Н.Я. Виленкин, А.Н. Виленкин, Г.С. Сурвилло и др. «Алгебра, 9», авт. Н.Я. Виленкин, Г.С. Сурвилло, А.С. Симонов, А.И. Кудрявцев.

Тема

График функции. Простейшие преобразования графиков (параллельные переносы вдоль координатных осей). График функции y=k/x. График дробно – линейной функции. График функции вида y=x, y=(x-m)+n. Отражение свойств функции на графике. Преобразование графиков функций: симметрия относительно осей координат и относительно прямой y=x. Построение графиков кусочно-заданных функций. Построение графиков функций связанных с модулем. Примеры построения графиков рациональных функций. Графики функций y=[x], y={x}. Графики функций y=xn, y=x.

«Алгебра, 8», «Алгебра, 9», авт. Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нелеков, С.Б. Суворова, «Учебные пособия, Алгебра. Дополнительные главы к школьному учебнику 8 (9) класса», авт. Ю.Н. Макарычев, Н.Г. Миндюк.

Тема

Построение преобразование графиков функций. График функции y=k/x. График дробно – линейной функции. График функции вида y=x, y=(x-m)+n. График квадратичной функции. Построение графиков функций. График функций y=-f(x), y=f(-x), y=-f(-x), y=f(x) y=f(x). [Графики функций y=x и y={x}.].

«Алгебра и математический анализ, 10», «Алгебра и математический анализ, 11», авт. Н.Я. Виленкин, О.С. Ивашев-Мусатов, С.И. Шварцбурд.

Тема

Построение графиков функций элементарными методами. Преобразование графиков. Графики дробно – линейных функций. Графики функций, связанных с модулем. Графики взаимно обратных функций. Построение графиков функций с помощю производной. Графики тригонометрических функций. Графики показательной и логарифмической функции

§2. Построение графика функций с помощью преобразования

Во многих случаях графики функций могут быть построены путем некоторых преобразований уже известных графиков других функций более простого вида. График функций вида:

y=Af(x+b)+B

может быть получен из графика функций y=f(x) при помощи следующих геометрических преобразований:

  1. а) Осевой симметрии относительно оси 0X;

б) осевой симметрии относительно оси 0Y;

в) центральной симметрии относительно начала координат точки 0;

  1. а) Параллельного переноса (сдвига) вдоль оси 0X;

б) параллельного переноса (сдвига) вдоль оси 0Y;

  1. а) Растяжения (или сжатия) по направлению оси 0X;

б) растяжения (или сжатия) по направлению оси 0Y;

Отметим, что:

  1. а) При осевой симметрии относительно оси 0X точка (x; y) переходит в точку (x; -y);

б) При осевой симметрии относительно оси 0Y точка (x; y) переходит в точку (-x; y);

в) При центральной симметрии относительно начала координат (x; y) переходит в точку (-x; -y);

  1. а) При параллельном переносе вдоль оси 0X точка (x; y) переходит в точку (x+a; y), где а – некоторое число при этом перенос происходит «вправо», если а>0, и «влево», если а<0;

б) ) При параллельном переносе вдоль оси 0Y точка (x; y) переходит в точку (x; y+b), где b – некоторое число при этом перенос происходит «вверх», если b>0, и «вниз», если b<0;

3. а) При растяжении (сжатии) в p раз (p>0, p1) вдоль оси 0X относительно 0Y точка (x; y) переходит в точку (px; y);

б) При растяжении (сжатии) в q раз (q>0, q1) вдоль оси 0Y относительно 0X точка (x; y) переходит в точку (x; qy);

Применительно к графикам функций эти свойства дают те конкретные геометрические преобразования (табл. 1), использование которых позволяет из известного графика функции y=f(x) строить графики других функций (рис. 1 - 11).

Таблица №1

Рассмотрим несколько примеров построения графиков функций:

Пример 1. График функции y=2x-3 получается из графика y=2x при помощи параллельного переноса его вдоль оси 0Y вниз на отрезок длины 3.

П ереписав 2x-3 в виде 2(x-3/2), замечаем, что график функции y=2(x-3/2) можно получить из графика функции y=2x при помощи

параллельного переноса его вдоль оси 0X вправо на отрезок длины 3/2 (рис. 12).

Пример 2. График функции y=4x2 получается из графика функции y= x2 растяжением последнего в 4 раза вдоль оси 0Y относительно оси 0X. Переписав 4x2 в виде (2x)2 , замечаем, что график функции y= x2 можно получить из графика функции y= x2 сжатием последнего в 2 раза вдоль оси 0X относительно оси 0Y (рис. 13).

Пример 3. График функции y= 2x-3 получается из графика y= 2x при помощи параллельного переноса его вдоль оси 0X вправо на отрезок длины 3.

Переписав 2x-3 в виде(1/8)*2x , замечаем, что график функции y=(1/8)*2x можно получить из графика функции y=2x сжатием последнего в 8 раз вдоль оси 0X (рис. 14).

Пример 4. Построить график функции:

y=1/2arctg(i/4-x)

Р ешение: построение графика данной функции может быть проведено по следующей схеме (рис. 13):

arctg arctg(-x) 1/2arctg(-x) 1/2arctg(-(x-1/4)).

Пример 5. Построить график функции:

y=ax2 +bx+c, a0.

Р ешение: квадратный трехчлен ax2+bx+c можно записать в виде a(x+(b/2a))2+(4ac-b2)/4a. Отсюда видно, что график функции y=ax2 +bx+c, получается из параболы y=x2 по следующей схеме:

x2 ax2 ax2ac b2)/4a  a(x+b/(2a))2 +(4ac-b2 )/4a

т.е. для построения графика y=a x2+bx+c надо:

  1. Р астянуть в араз, если а>1 (сжать араз, если а<1), вдоль оси0X график функции y=x2 (с возможным последующим отображением полученного графика функции y=a x2 относительно оси 0Y, если а<0).

  2. П араллельно перенести вдоль оси 0Y на отрезок длины ac- b2)/4a вверх (вниз) график функции y=ax2 , если величина ac- b2)/4a положительна (отрицательна).

  3. Полученный после предыдущего преобразования график параллельно перенести вдоль оси 0X на отрезок длины b/2aвправо, если b/2a<0, и влево, если b/2a>0.

Пример 6. Построить график функции:

y= x2-5x+6

Решение: построим график функции y=x2-5x+6

x2 (x-5/2)2 (x-5/2)2 -1/4= x2 x+6

На рисунке изображен график функций y= x2-5x+6

И ногда функция, график которой должен быть построен, представляется как сумма двух простейших функций, графики которых нам знакомы или легко могут быть построены. В этом случае можно применить приём графического сложения ординат этих графиков (для краткости говорят просто о сложении графиков.) покажем этот приём на примерах.

Пример 1. Построить график функций y=x3 +2x+2.

Р ешение: можно представить данную функцию как сумму функций y=x3 и y=-2x+2, графики которых нам хорошо знакомы. Они изображены на рис. 16 тонкими линиями: это прямая y=-2x+2 и кубическая парабола y=x3. Далее производится суммирование ординат: к ординатам точек кубической параболы прибавляются (с учетом знака!) ординаты точек прямой. При выполнении этой операции удобно пользоваться мерительным циркулем; следует использовать наиболее важные и характерные точки каждого из графиков (в нашем примере – вершину O(0; 0) параболы, точки п ересечения прямой с осями и т.д.). Итогом построения служит график, показанный жирной линией. Мы можем много сказать о функции: она имеет максимум и минимум, обращается в нуль в одной точке и т.д. Положение этих характерных точек её графика мы могли бы найти приближенно по чертежу.

Пример 2. Построить график функций y=2ч-2x.

Решение: график данной функции можно получить сложением графиков показательной функции y=2x и линейной функции y=-2x. Это сделано на рис. 17. График пересекает ось OX в точках x=1, x=2, являющихся нулями функции y=2ч-2x.

Обратим ещё внимание на то, что прямая y=-2x является асимптотой графика (т.к. при x, стремящимся к минус бесконечности, разность между значениями функций y=2ч-2x и y=-2x стремится к нулю). Из построения видно, что функция имеет точку минимума, найти её точное положение для нас затруднительно.

Пример 3. Построить график функций y=x2-x4.

Решение: график может быть построен вычитанием ординат графика y=x4 из ординат графика y=x2 (рис. 18). В данном случае полезно дополнить это построение некоторым общим исследованием свойств функции y=x2-x4. Ясно, что функция определена для всех значений x и является четной. Она обращается в нуль при x=0, x=1. Как видно из построения графика методом вычитания, следует ожидать у функции наличия двух точек максимума. В данном случае их нетрудно найти; преобразуем выражение функции:

y=x2-x4=1/4-(1/4- x2+x4)=1/4-( x2-1/2) 2 .

Теперь видно, что наибольшее значение y=1/4 функция имеет при х=1/2. Точка x=0 является точкой минимума данной функции (но значение функции в этой точке, равное нулю, не есть её наименьшее значение).

(книга 2)

Используя геометрические преобразования, рассмотренные выше, в их различных комбинациях, можно построить и графики более сложных функций.

Пример1. Построить график функций

y=x - 1 -2

Решение: график данной функции можно построить по графику функции y=x-1, если последний параллельно перенести вдоль оси 0Y вниз на отрезок длины 2, а затем эту часть полученного графика функции y=x - 1 -2, которая расположена в нижней полуплоскости, симметрично отобразить относительно оси 0X. График функции y=x - 1 можно построить по графику функции y=x если последний параллельно перенести вдоль оси 0Y вниз на отрезок длинны 1, а затем ту часть полученного графика функции y=x - 1, которая расположена в нижней плоскости, симметрично отобразить относительно оси 0X.

Таким образом, график заданной функции может быть построен согласно схеме: xxx-1x-1x-1-2x-12




§3. Применение производной

к построению графика функции

Графики функций строятся по точкам. Обычно из уравнения y=f(x) находят несколько точек графика функций y=f(x) и соединяют эти точки плавной кривой. Однако при таком методе легко пропустить какие-то особенности графика и допустить ошибку в построении.

Для построения графика функции нужно исследовать её свойства. Прежде всего надо найти область определения функции, а потом исследовать функцию на честность и периодичность. Т.к. график четной функции симметричен относительно оси Оу, а график нечетной - относительно начала координат, то для четных и нечетных функций можно ограничится исследованием их свойств лишь при хЕсли периодическая и Т – её основной период, то можно ограничится исследованием свойств функции на промежутке длинны Т.

Д алее полезно найти точки пересечения графика с осями координат и определить интервалы знакопостоянства функции. Дело в том , что если, скажем, на интервале (a; b) функция y=f(x) принимает только положительные значения, то график её на этом интервале лежит выше оси Ох. Значит, часть плоскости, лежащею под указанным интервалом, можно заштриховать – там графика нет. Эта часть исследования позволяет указать области, где может лежать график функции. После этого можно изучить поведения функции на границах области определения, установить характер точек разрыва (если они есть), найти асимптоты. Наконец следует найти промежутки возрастания и убывания функции и исследовать её на экстремум.

Подводя итог всему сказанному выше, получаем следующую схему исследования свойств функции и построения ее графика.

  1. Найти область определения функции,

  2. Исследовать функцию на четность.

  3. Исследовать функцию на периодичность.

  4. Найти точки пересечения графика с осями координат.

  5. Определить промежутки знакопостоянства.

  6. Исследовать функцию на границах области. Найти асимптоты.

  7. Исследовать функцию на экстремум.

  8. Составить таблицу значений функции для некоторых значений аргумента.

  9. Используя все полученные результаты ,построить график функции.

Пример 1. Построить график функции y= x4-2 x2-8.

Решение. 1.Функция определена при любом значении x,т.е. D=(f)=R.

2. Так как область определения функции - симметричное множество и f(-x)=f(x),то функция четна .Следовательно график функции симметричен относительно оси Оy и для дальнейшего исследования можно ограничится промежутком [0,+ ]. Но в данном примере мы этого делать не будем.

3Функция непериодическая.

  1. Найдем точки пересечения графика с осью Ох. Для этого решим уравнение x4- x2-8=0. Пологая u= x2,получим квадратное уравнение u2- u-8=0. Пологая u= x2, получим квадратное уравнение u2- u-8=0, имеющее корни 4 и –2. Из уравнения x2=4 находим х=2, х=-2, уравнение x2=-2 не имеет решений. Мы нашли две точки пересечения с осью Ох:(2;0) и (-2;0).

С осью Оу график функции пересекается в точке(0;-8).

  1. Найдем интервалы знакопостоянства функции. Заданная функция не прерывна на всей числовой прямой обращается в 0 в точках 2 и –2. Значит, в промежутках (- ,-2). (-2;2) и (2; ) она сохраняет постоянный знак Чтобы определить знак функции на каждом из указанных промежутков, достаточно взять по одной “пробной” точке из каждого промежутка.

Имеем –100 (- ,2), f(-100)=(-100)4-2(-100)2-8>0. Значит, f(x)>0 в промежутке (- ; -2). Далее, 0(-2; 2), f(0)=-8<0. Поэтому f(x)<0 в промежутке(-2; 2). Наконец, 100f(100)=f(-100), а выше мы видели, что f(-100)>0. Следовательно, f(100)>0, а потом f(x)>0 в промежутке (2; + ).

На рисунке представлена геометрическая иллюстрация тех сведений о графике, которыми мы располагаем к настоящему моменту. Заштрихованы те участки координатной плоскости, где графика нет, отмечены известные точки(0; -8), (2; 0), (-2; 0). Это – ответ на вопрос, где расположен график. Дальнейшее исследование позволяет ответить на вопрос, как строить график.

6) Изучим поведение функции вблизи границ области определения. Поскольку D(f)=(- ; + ), такими «границами»можно считать - и + . преобразовав выражение x4-2x2-8 к виду x2-( x2-2-8/ x2), замечаем, что если хили хто у.

Асимптот график не имеет.

7) Исследуем функцию на экстремум; имеем

y’=4 x3-4x=4x(x-1)(x+1)

Прировняв производную нулю, находим три корня: 0, 1, -1. Эти точки разбивают числовую прямую на промежутки (- ; -1), (-1;0), (0;1), (1; + ). Если х>1, то у'>0, а в остальных промежутках знаки чередуются справа на лево, смотри рисунок.

Составим таблицу:

x

-

-1

-1

0

0

1

1

f’(x)

-

0

+

0

-

0

+

f(x)

Убыв.

-9 min

Возр.

-8 max

Убыв.

-9 min

Возр.

Итак, в точках (-1; -9) и (1; -9) функция имеет минимум, а в точке (0; -8) - максимум.

8) Составим таблицу значений функции для некоторых значений аргумента, включая те, что были уже отмечены в ходе исследования:

X

-2

-1

0

1

2

-2,5

2,5

Y

0

-9

-8

-9

0





9 ) Строим график функции y= x4-2 x2-8.

Пример 2. Построить график функции y=( x2-1)/x.

Решение:

  1. Функция не определена только в точке х=0, т.е. D(f)=(- ; 0)(0; + ).

  1. Множество D(f) является симметричным; кроме того f(-х)=((-х)2-1)/-х=-(x2-1)/-х=-f(х). Значит, y=f(x) – нечетная функция. Поэтому график симметричен относительно начала координат и для дальнейшего исследования можно ограничится промежутком (0; + ), что мы и сделаем.

  1. Функция непериодическая.

  1. Найдем точки пересечения графика с положительным лучом оси Ох. Из уравнения ( x2-1)/x=0 находим x=1 (корень х=-1 пока не принемаем во внимание). Итак, точка пересичения с осью Ох – точку (1; 0).

С осью Оу график не пересекается, т.к. точка х=0 не принадлежит к области определения функции: 0 D(f).

  1. Находим промежутки знакопостоянства: (0; 1) и (1; + ). В первом из них f(x)0/

На рисунке представлена геометрическая иллюстрация тех сведений о графике, которыми мы располагаем к настоящему моменту.

  1. Изучим поведение функции вблизи границ области определения, т.е. вблизи точки ноль и при хЕсли х0 (напомним, что мы рассматриваем случай где х>0), то (x2-1)/x. Если же хто ( x2-1)/x=х-1/х.

Прямая х=0 является вертикальной асимптотой. Далее, т.к. степень числителя выражается (x2-1)/x на единицу больше степени знаменателя, то должна существовать и наклонная асимптота. В самом деле, поскольку (x2-1)/x=х-1/х и 1/х стремятся к нулю при хнаклонной асимптотой служит прямая у=х.

  1. Исследуем функцию на экстремум; имеем

y’=((x2-1)/x)’=([-1/x)’=1+1/ x2.

Замечаем, что у’>0при любых х. Значит на луче (0; + ) функция возрастает и экстремумов не имеет.

  1. Составим таблицу значения функции:

x

1

0.5

0.25

2

3

4

y

0

-1.5

-3.75

1.5

2.67

3.75


  1. отметив найденные точки на координатной плоскости и учитывая результаты исследования, строим ветвь графика при х>0, смотри рисунок.

Т.к. график функции y=(x2-1)/x, симметричен относительно начала координат, то добавив к построенной ветви симметричную ей относительно начала координат, получим искомый график.

  1. Глава 3. ФОРМИРОВАНИЕ УМЕНИЯ

САМОСТОЯТЕЛЬНОЙ РАБОТЫ ПРИ ИЗУЧЕНИИ ФУНКЦИЙ В ШКОЛЬНОМ КУРСЕ МАТЕМАТИКИ

В настоящее время каждый учитель математики ставит перед собой задачу не только сообщить школьникам определенную сумму знаний, наполнить их память некоторым набором фактов и теорем, но и научить учащихся думать, развить их мысль, творческую инициати­ву, самостоятельность. Привитие ученикам навыков самостоятельной работы, умения ориентироваться в поступающей информации, умения самостоятельно пополнять свои знания — это сложный и длительный процесс, требующий специально организованной и целенаправленной работы учителя, в которой, так же как и в любой другой работе. выделяются определенные этапы.

Характеристики

Тип файла
Документ
Размер
283 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6360
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее