ORETERVER (675862), страница 3

Файл №675862 ORETERVER (Обработка результатов экспериментов и наблюдений) 3 страницаORETERVER (675862) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Обычно число измерений не очень велико. При этом точное значение s не известно, следовательно, отбрасывать измерения, отличающиеся от среднего более чем на 3s, нельзя.

Для оценки вероятности b случайного появления ²выскакивающих² значений в ряду n измерений составлены соответствующие таблицы.

Для применения таблицы вычисляется среднее арифметическое а и средняя квадратичная погрешность Sn из всех измерений, включая и подозреваемое значение аk. Затем вычисляется уклонение подозреваемого значения аk от среднего арифметического в долях среднеквадратичной ошибки

Vмакс = .

По таблице определяется какой вероятности b соответствует полученное значение Vмакс.

Если вероятность появления данного измерения в ряду лежит в диапазоне 0,1 > b > 0,01, то представляется одинаково правильным - оставить это измерение или отбросить. В случае же, когда b выходит за указанные пределы, вопрос об отбрасывании решается практически однозначно. Решая вопрос об отбрасывании полезно посмотреть, как сильно оно меняет окончательный результат по а и Sn.

1.9. Ошибки косвенных измерений

Часто измеряется не непосредственно интересующая нас величина, а другая, зависящая от нее некоторым образом. Например, при резании металлов часто непосредственно измеряются деформации, ЭДС, по которым судят о возникающих силах и температурах. При этом также необходимо оценить ошибку измерения.

При косвенных измерениях значение y измеряемой величины находят по некоторой формуле

y = ¦ (х1, х2, ... , хm),

где x1, x2, ... xm - средние арифметические измеряемые (непосредственно) величины. Рассмотрим функцию общего вида

y = ¦ (х1, х2, ... , хm)

где x1, x2, ... , xm - независимые переменные, для определения которых производятся n прямых независимых измерений по каждой xi.

Обозначим значения переменных через среднее значение и отклонения

y ± Dy = ¦ (x1 ± Dx1, x2 ± Dx2, ... , xm ± Dxm).

Эту функцию представим рядом Тейлора, ограничив его первыми членами ряда ( принимая Dxi << xi )

y ± Dy = ¦(х1, х2, ... , хn) ± ,

где

- производная функции по xi, взятая в точке xi.

Учитывая, что y = ¦ (x1, x2, ... , xm) получаем

Dy = .

Чтобы учесть погрешности Dxi всех n опытов целесообразно использовать средние квадратические оценки ( D xi )2, так как Dxi = 0.

Возведем в квадрат левую и правую части уравнения и разделим на n

.

Здесь суммы удвоенных произведений типа

согласно четвертому свойству случайных ошибок ( Dxi = 0 ).

Тогда в левой и правой частях имеем среднеквадратические погрешности функции и аргументов

S .

Пример. При тарировке динамометра было получено уравнение зависимости силы от отклонения l луча осциллографа вида P = 25 l. Точность измерения отклонения D l = 1 мм. Тогда

DP = .

В качестве меры точности лучше выступает не абсолютная, а относительная погрешность.

å .

Рассмотрим ее определение на примере. Пусть

y = cx1a×x2b×x3g.

Тогда

; ;

.

= .

Аналогично можно определить относительную погрешность и при других зависимостях. Зная относительную погрешность, можно определить и абсолютное ее значение:

Dy = y×åy.

  1. Правила округления чисел

Величина погрешности результата измерений физической величины дает представление о том, какие цифры в числовом значении измеряемой величины сомнительны. Поэтому результаты измерений следует округлять перед тем, как производить с ними дальнейшие вычисления.

Округлять числовое значение результата измерений следует в соответствии с числовым разрядом значащей цифры погрешности. При этом выполняют общие правила округления.

Лишние цифры в целых числах заменяются нулями, а в десятичных дробях отбрасываются ( как и лишние нули ). Например, если погрешность измерения ± 0,001 мм, то результат 1,07005 округляется до 1,070.

Если первая из изменяемых нулями и отбрасываемых цифр меньше 5, остающиеся цифры не изменяются. Например, число 148935, точность измерения ± 50, округление: 148900.

Если первая из заменяемых нулями или отбрасываемых цифр равна 5, а за ней не следует никаких цифр или идут нули, то округление производится до ближайшего четного числа. Например, число 123,50 округляется до 124.

Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу. Например, число 6783,6 округляется до 6784.

  1. Порядок обработки результатов измерений

При практической обработке результатов измерений можно последовательно выполнить следующие операции:

  1. Записать результаты измерений;

  2. Вычислить среднее значение из n измерений

а =

  1. Определить погрешности отдельных измерений Vi = а - аi;

  2. Вычислить квадраты погрешностей отдельных измерений Vi 2;

  3. Если несколько измерений резко отличаются по своим значениям от остальных измерений, то следует проверить не являются ли они промахом. При исключении одного или нескольких измерений п.п.1...4 повторить;

  4. Определяется средняя квадратичная погрешность результата серии измерений

  1. Задается значение надежности a;

  2. Определяется коэффициент Стьюдента ta (n) для выбранной надежности a и числа проведенных измерений n;

  3. Находятся границы доверительного интервала

Dх = ta (n)×Sa

  1. Если величина погрешности результата измерений (п.9) окажется сравнимой с величиной d погрешности прибора, то в качестве границы доверительного интервала следует взять величину

.

  1. Записать окончательный результат

X = a ± Dx ;

  1. Оценить относительную погрешность результата серии измерений

å = .

  1. Обработка результатов измерений диаметра цилиндра

Микрометром было сделано десять замеров диаметра цилиндра. Цена деления микрометра 0,01 мм. Определить диаметр цилиндра с надежностью a = 0,95 и a = 0,99. Оценить влияние числа замеров на точность получаемого результата.

аi: 14,85; 14,80; 14,84; 14,81; 14,79;

14,81; 14,80; 14,85; 14,84; 14,80.

  1. Для первых пяти измерений определим среднеарифметическое значение и границы доверительного интервала. Для удобства расчетов выберем произвольное число ао удобное для расчетов (ао = 14,80 мм) и определим разности (аi - ао) и квадраты этих разностей. Результаты сведены в таблицу.

i

аi, мм

аi - ао, мм

i - ао)2, мм2

1

14, 85

0, 05

0, 0025

2

14, 80

0, 00

0, 0000

3

14, 84

0, 04

0, 0016

4

14, 81

0, 01

0, 0001

5

14, 79

-0, 01

0, 0001

0, 09

0, 0043

Найдем среднее значение а и среднеквадратичное отклонение Sа:

а - ао = 0, 018 мм;

( мм2 );

( мм ).

Для надежности a = 0,95 и n = 5 ta = 2,78. Абсолютная погрешность измерения Dх:

Dх = ta× Sа = 2,78 × 0,0116 = 0,0322 мм.

Результат измерения можно представить в виде

(14,818 - 0,032) мм £ а £ (14,818 + 0,032) мм

или сохраняя в величине погрешности одну значащую цифру

(14,82 - 0,03) мм £ а £ (14,82 + 0,03) мм,

т.е. 14,79 мм £ а £ 14,85 мм или а = (14,82 ± 0,03) мм.

Относительная погрешность

åа = .

Теперь найдем абсолютную и относительную погрешность этих измерений при a = 0,99.

В этом случае ta = 4,60. Тогда

Dх = ta×Sa = 4,60×1,16×10-2 = 5,34×10-2 ( мм ).

Следовательно а = (14,82 ± 0,05) мм

åа = .

Видно, что с увеличением надежности границы доверительного интервала возросли, а точность результата уменьшилась.

  1. Проведем расчет погрешностей для этих же пяти измерений, незаконно полагая, что s2 = S2n (что при n = 5 ошибочно). Для этого используем распределение Гаусса (а не Стюарта). При a = 0,95 ka = .

Это дает возможность определить

Dх = ka×Sa = 1,96×1,16×10-2 » 2×10-2 ( мм ),

т.е. погрешность получилась меньше примерно на 30%. Если по этой величине погрешности определить величину надежности при ta = ka, то из таблицы коэффициентов Стьюдента получим a < 0,90 вместо заданной a = 0,95. Следовательно при малом числе измерений n применение закона нормального распределения с s2 = S2n вместо распределения Стьюдента приводит к уменьшению надежности результата измерений.

  1. Найдем средние значения и погрешности следующих пяти измерений

i

аi, мм

аi - ао, мм

i - ао)2, мм2

1

14, 81

0, 01

0, 0001

2

14, 80

0, 00

0

3

14, 85

0, 05

0, 0025

4

14, 84

0, 04

0, 0016

5

14, 80

0, 00

0

0, 10

0, 0042

ао = 14, 80 мм;

а = ао + ( мм );

а - ао = 0, 02 мм;

( мм2 );

Sa = 1, 05×10-2 мм.

При a = 0,95:

Dх = ta×Sa = ± 2,78×1,05×10-2 = 2,92×10-2 ( мм );

åа = ;

Х = 14, 82 ± 0, 03 мм.

При a = 0,99:

Dх = ± 4,60×1,05×10-2 » 5×10-2 ( мм );

åа = ±

Х = 14, 82 ± 0,05 мм.

Результаты практически не отличаются, от результатов полученных из первой серии.

  1. Найдем теперь погрешность результата всей серии из десяти измерений. В этом случае (мм); (мм2).

Эти величины получаются суммированием последних строк из таблиц частных серий.

ао = 14, 80 мм;

а = ао + ( мм );

а - ао = 0, 019 мм.

Sa2 =

= ( мм2 );

Sa = 7, 35×10-3 мм.

При a = 0,95 имеем

Dх = ta×Sa = ± 2,26×7,35×10-3 = ± 1,7×10-2 ( мм );

åа = ;

а = 14, 819 ± 0, 017 мм.

При a = 0,99 получаем

Dх = ta×Sa = ± 3,25×7,35×10-2 = ± 2,4×10-2 ( мм );

åа = ;

а = 14, 819 ± 0, 024 мм.

Видно, что абсолютная и относительная погрешность результата десяти измерений стали почти в два раза меньше погрешностей пяти измерений.

Применение нормального распределения с s2 = S2n дает в случае a = 0,95 ka = 1,96 и Dх = 1,4 × 10-2 мм, а величина надежности понижается до 0,91; в случае a = 0,99 получаем ka = 2,58 и Dх = 1,9 × 10-2 мм, а величина надежности понижается до a = 0,97.

Как видно, с ростом числа измерений различие между результатами, вычислениями по распределению Стьюдента и по нормальному распределению уменьшается.

Контрольные вопросы

  1. Цель математической обработки результатов эксперимента;

  2. Виды измерений;

  3. Типы ошибок измерения;

  4. Свойства случайных ошибок;

  5. Почему среднеарифметическое значение случайной величины при нормальном законе ее распределения является вероятнейшим значением?

  6. Что такое истинная абсолютная и вероятнейшая ошибки отдельного измерения?

  7. Что такое доверительный интервал случайной величины?

  8. Что такое уровень значимости (надежности) серии измерений?

  9. Геометрический смысл уровня значимости;

  10. Почему при малом числе опытов нельзя погрешность измерений представить в виде Dх = ± Ksа?

  11. Что является критерием “случайности” большого отклонения измеряемой величины?

  12. Чем определяется величина случайной ошибки косвенных измерений?

  13. Чем определяется точность числовой записи случайной величины?

  1. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН

При характеристике случайных величин недостаточно указать их возможные значения. Необходимо еще знать насколько часто возникают различные значения этой величины. Это характеризуется вероятностью p отдельных ее значений.

Соотношение, устанавливающее связь между значениями случайной величины и вероятностями этих значений, называют законом распределения случайной величины. Различают интегральный и дифференциальный законы распределения.

  1. Виды случайных величин и законы их распределения

Под случайной величиной понимается величина, принимающая в результате опыта какое либо числовое или качественное значение.

Случайная величина, принимающая конечное число или последовательность различных значений, называется дискретной случайной величиной. Случайная величина, принимающая все значения из некоторого интервала, называется непрерывной случайной величиной.

Под интегральным законом распределения (или функцией распределения) F (х) случайной величины Х понимают вероятность p того, что случайная величина Х не превысит некоторого ее значения х

F (х) = p (Х < х).

Основным свойством интегрального распределения является монотонное не убывание в ограниченном диапазоне [ 0; 1 ].

Действительно, если х1 и х2 некоторые значения случайной величины Х. Причем х2 > х1, то очевидно, что событие p (Х < х2) ³ p (Х < х1), т.к. между значениями х1 и х2 могут быть и промежуточные. Из определения интегрального закона следует, что F (х2) ³ F (х1), что говорит о монотонном не убывании функции. Очевидно также, что

F (- ¥) = p (Х < - ¥) = 0;

Þ F (¥) - F (- ¥) = 1,

F (+ ¥) = p (Х < ¥) = 1;

т.е. F (х) изменяется в диапазоне от 0 до 1.

Закон распределения дискретной случайной величины может быть задан таблицей или ступенчатой функцией (рис. 4)

Рис. 4. Интегральный закон распределения

дискретной случайной величины

Для дискретной случайной величины

F (x) = P (X < x) = P (-¥ < X < x) = ,

где суммирование распространяется на хi < х. В промежутке между двумя последовательными значениями Х функция F (х) постоянна. При переходе аргумента х через значение хi F (х) скачком возрастает на величину p (Х = хi).

Рассмотрим p (х1 £ Х < х2). Если х2 > х1, то очевидно, что

p (Х < х2) = p (Х < х1) + p (х1 £ Х < х2).

Тогда

p (х1 £ Х < х2) = p (Х < х2) - p (Х < х1) = F (х2) - F (х1),

т.е. вероятность попадания случайной величины в интервал [х1; х2) равен разности значений интегральной функции граничных точек.

Последнее условие можно использовать для нахождения вероятности p (Х = х1) для непрерывной случайной величины. Для этого рассмотрим предел

p (X = x1) = ,

т.е. если закон распределения случайной величины есть функция непрерывная, то вероятность того, что случайная величина примет заранее заданное значение, равна нулю.

Здесь видно различие между дискретными и непрерывными случайными величинами. Для дискретных случайных величин, для каждого значения случайной величины существует своя вероятность. И для него справедливо утверждение: событие, вероятность которого равна нулю, невозможно. Для непрерывной случайной величины это утверждение неверно. Как показано, вероятность того, что Х = х1 ( где х1- заранее выбранное число) равна нулю, это событие не является невозможным.

Рассмотрим непрерывную случайную величину Х, интегральный закон которой предполагается непрерывным и дифференцируемым. Функцию

¦ (х) = F¢ (х)

называют дифференциальным законом распределения или плотностью вероятности случайной величины Х. Из определения производной можно записать

¦ (x) = F¢ (x) = ,

т.е. плотность вероятности случайной величины Х в точке х равна пределу отношения вероятности попадания величины Х в интервал (х; х + Dх) к Dх, когда Dх стремится к нулю.

Используя понятия интегральной функции распределения и определенного интеграла можно записать

¦ (x) = F¢ (x) или F (x) = p (x1 < X < x2) = .

Это соотношение имеет простое геометрическое толкование (рис. 5).

Если определяет заштрихованную область в соответствующих пределах, то

p (х < Х < х + Dх) » ¦ (х) Dх.

Рис. 5. Геометрический смысл дифференциальной функции распределения

Из свойств интегрального распределения следует

.

Зная дифференциальный закон распределения можно определить интегральный закон распределения

F (x) = .

  1. Числовые характеристики случайных величин, заданных своими распределениями

Основными характеристиками случайной величины, заданной своими распределениями, является математическое ожидание ( или среднее значение ) и дисперсия.

Математическое ожидание случайной величины является центром ее распределения. Дисперсия характеризует отклонение случайной величины от ее среднего значения.

Если Х дискретная случайная величина, значения хi которой принимают с вероятностью pi, так, что , то математическое ожидание М (Х) случайной величины Х определяется равенством

M (X) = ,

т.е. суммой произведений всех ее возможных значений на соответствующие вероятности.

Математическим ожиданием непрерывной случайной величины является аналог его дискретного выражения

M (X) = .

Действительно, все значения в интервале (х; х + Dх) можно считать примерно равными х, а вероятность таких значений равна ¦ (х) dx (см. ранее). Поэтому значения хi дискретного распределения заменяются х, а вероятности pi - на ¦ (х) dx, а сумма заменяется интегралом.

Дисперсией или рассеянием случайной величины Х называется математическое ожидание квадрата разности случайной величины и ее математического ожидания.

D (Х) = М [Х - М (Х)]2 = М (Х - х)2 = s2 (х)

Если случайная величина Х дискретна и принимает значения хi с вероятностями pi, то случайная величина (Х - х)2 принимает значения (хi - х)2 с вероятностями Рi. Поэтому для дискретной случайной величины имеем

D (X) = .

Аналогично для непрерывной случайной величины получаем

D (X) = .

Чем меньше величина дисперсии, тем лучше значения случайной величины характеризуются ее математическим ожиданием.

  1. Основные дискретные и непрерывные законы распределения

Как отмечалось ранее, очень часто случайная величина распределена по нормальному закону. Но существуют и другие распределения, имеющие практическое значение. Рассмотрим некоторые из них по условиям возникновения и основным параметрам их характеризующим.

  1. Равномерное распределение вероятностей.

Пусть плотность вероятности А равна нулю всюду, кроме интервала (a; b), на котором она постоянна (рис. 6). Тогда можно записать

p (a < X < b) = A = .

Рис. 6. Дифференциальный и интегральный законы

равномерного распределения

Тогда дифференциальный закон равномерного распределения определяется

¦ (x) =

Интегральный закон распределения

F (x) = .

При х ³ b имеем

F (x) =

Таким образом интегральный закон равномерного распределения задается (рис. 6)

F (x) =

Основные характеристики распределения

М (X) = ;

D(X) =

=

=

.

  1. Биноминальное распределение

Пусть при некотором испытании событие А может наступить или не произойти (А). Обозначим вероятность А через р, а А через q = 1 -р ( других итогов испытания нет ). Тогда исходами двух последовательных независимых испытаний и их вероятностью будут:

АА - р2; АА - рq; АА - qр; АА - q2.

Отсюда видно, что двукратное появление события А равно р2, вероятность однократного появления - 2 рq, а вероятность того, что А не наступит ни разу - q2. Эти результаты единственно возможные и поэтому

.

Это рассуждение можно перенести на любое число испытаний.

Например, при трех испытаниях получим

.

Характеристики

Тип файла
Документ
Размер
759,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее