kursovik (675853), страница 3

Файл №675853 kursovik (Некоторые дополнительные вычислительные методы) 3 страницаkursovik (675853) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

;

;

.

Интерполяция сплайнами

Пусть отрезок [a, b] разбит на n равных частей [xi, xi+1], где xi=a+ih, i=0, ..., n, xn=b,

h=(b-a)/n.

Сплайном называется функция, которая вместе с несколькими производными непрерывна на всем заданном отрезке [a, b], а на каждом частичном отрезке [xi, xi+1] в отдельности является некоторым алгебраи­чес­ким многочленом.

Максимальная по всем частичным отрезкам степень многочленов называется степенью сплайна, а разность между степенью сплайна и порядком наивысшей непрерывной на [a,b] производной - дефектом сплайна.

На практике широкое распространение получили сплайны третьей степени, имеющие на [a, b] непрерывную, по крайней мере, первую производную. Эти сплайны называются кубическими и обозначаются S3(x).

Пусть на отрезке [a, b] в узлах сетки  заданы значения некоторой функции

fi =f(xi), i=0, ..., n.

Интерполяционным кубическим сплайном S3(x) называется сплайн

S3(x)=аi0i1(x - xi)+аi2(x - xi)2i3(x - xi)3, x[xi, xi+1], удовлетворяющий условиям

S3(xi)=f(xi), i=0, ..., n.

Данный сплайн на каждом из отрезков [xi, xi+1], i=0, ..., n-1 определяется четырьмя коэффициентами, и поэтому для его построения на всем промежутке [a, b] необходимо определить 4n коэффициентов. Для их однозначного определения необходимо задать 4n уравнений.

Условие S3(xi)=f(xi), i=0, ..., n дает 2n уравнений, при этом функция S3(xi), удовле­творяющая этим условиям, будет непрерывна во всех внутренних узлах.

Условие непрерывности производных сплайна , r=1,2 во всех внутренних узлах xi, i=1, ..., n-1 сетки  дает 2(n-1) равенств.

Вместе получается 4N-2 уравнений.

Два дополнительных условия обычно задаются в виде ограничений на значение производных сплайна на концах промежутка [a, b] и называются краевыми условиями.

Наиболее употребительны следующие типы краевых условий:

а) S'3(а)=f'(а), S'(b)=f'(b);

б) S"3(а)=f"(а), S"(b)=f"(b);

в) ;

г) S'''3(x p+0)=S'''3(x p-0), р =1, n-1.

4. Численное дифференцирование и интегрирование

Если функция f(x) заданна аналитически ее первообразная F(x) является элементарной функцией, то вычисляется по формуле Ньютона-Лейбница: В тех случаях, когда функция f(x) задана аналитически, но ее первообразная не является элементарной функцией или отыскать ее сложно, а также в случае, когда функция f(x) задана графически или таблично, для вычисления применяются приближенные методы.

Постановка задачи численного интегрирования

Задача численного интегрирования функции заключается в вычислении определенного интеграла на основании ряда значений подынтегральной функции. Численное вычисление однократного интеграла называется механической квадратурой. Обычный прием механической квадратуры состоит в том, что данную функцию f(x) на рассматриваемом отрезке [a, b] заменяют интерполирующей или аппроксимирующей функцией φ(x) простого вида, а затем приближенно полагают: Функция φ(x) должна быть такова, чтобы интеграл вычислялся непосредственно. Если функция f(x) заданна аналитически, то ставится вопрос об оценке погрешности. Пусть для функции y=f(x) известны в n+1 точках x0, x1, x2, …, xn отрезка [a, b] соответствующие значения f(xi)=yi (i=0, 1, 2, …, n). Требуется приближенно найти По заданным значениям yi построим полином Лагранжа , где

Пn+1(x)=(x-x0)(x-x1)…(x-xn), причем Ln(xi)=yi (i=0, 1, 2, …, n). Заменяя функцию f(x) полиномом Ln(x), получим равенство где Rn[f] – ошибка квадратурной формулы. Отсюда получаем приближенную квадратурную формулу

где (i=0, 1, 2, …, n). Для вычисления Ai заметим, что

1) коэффициенты Ai при данном расположении узлов не зависят от выбора функции f(x);

2) для полинома степени n полученная формула – точная, так как тогда Ln(x)=f(x); следовательно, формула - точная при y=xk (k=0, 1, 2, …, n), т.е. Rn[xk]=0 при k=0, 1, …, n. Полагая y=xk (k=0, 1, 2, …, n), получим линейную систему из n+1 уравнений - где (k=0, 1, …, n), из которой можно определить коэффициенты A0, A1, …, An.

Составные квадратурные формулы

Приведем ряд простейших квадратурных формул, используемых в практике численного интегрирования функции f(x) на некотором интервале [a, b], разбитого на n равных отрезков точками a0=a, a1=a+h, a2=a+2h, …, an=a+nh+b, где n=0,1, …, k и Положим f(xn)=yn=f(a+nh).

Формула прямоугольников:

Погрешность формулы определяется выражением

где

Формула трапеций:

Погрешность формулы определяется выражением

где

Формула Симпсона: где

Погрешность формулы определяется выражением

где

Если длина интервала [a, b] велика для применения простейших квадратурных формул, то поступают следующим образом:

1) интервал [a, b] разбивают точками xi, на n интервалов по некоторому правилу;

2) на каждом частичном интервале [xi, xi+1] применяют простейшую квадратурную формулу, находят приближенное значение интеграла

3) из полученных выражений Qi составляют (отсюда и название составная формула) квадратурную формулу для всего интервала [a, b];

4) абсолютную погрешность R составной формулы находят суммированием погрешностей Ri на каждом частичном интервале.

5. Приближенное вычисление обыкновенных дифференциальных уравнений

Обыкновенным дифференциальным уравнением называется равенство , в котором - независимая переменная, изменяющаяся в некотором отрезке , а - неизвестная функция от , которую и надо найти. Различают два типа обыкновенных дифференциальных уравнений - уравнения без начальных условий и уравнения с начальными условиями. Уравнения без начальных условий - это как раз то, что было только что определено. А уравнение с начальными условиями - это записанное выше уравнение относительно функции , но в котором требуется найти лишь такую функцию , которая удовлетворяет при некотором следующим условиям:

, т.е. в точке функция и ее первые производных принимают наперед заданные значения. В этой ситуации число называется порядком уравнения.

Метод Рунге-Кутта

Изложим идею метода на примере:

Интегрируя это уравнение в пределах от x до x + h (0 < h <1), получим равенство которое посредством последнего интеграла связывает значения решения рассматриваемого уравнения в двух точках, удаленных друг от друга на расстояние шага h. Для удобства записи данного выражения используем обозначение
∆y=y(x+h)–y(x) и замену переменной интегрирования t=x+h. Окончательно получим:

Указав эффективный метод приближенного вычисления интеграла в выражении , мы получим при этом одно из правил численного интегрирования уравнения

Постараемся составить линейную комбинацию величин i, i = 0, 1, ..., q, которая будет являться аналогом квадратурной суммы и позволит вычислить приближенное значение приращения y: где

Метод четвертого порядка для q = 3, имеет вид где

Особо широко известно другое вычислительное правило Рунге-Кутта четвертого порядка точности: где

Метод Рунге-Кутта имеет погрешность четвертого порядка (~ h4 ).

Правило Рунге. Если приближенный метод имеет порядок погрешности m, то погрешность можно приближенно оценить по формуле

В формуле O(xi) – главный член погрешности, и - приближенные решения в точке xi, найденные с шагом h и 2h соответственно.

Экстраполяционные методы Адамса

Широко распространенным семейством многошаговых методов являются методы Адамса. Простейший из них, получающийся при , совпадает с рассмотренным ранее методом Эйлера первого порядка точности. В практических расчетах чаще всего используется вариант метода Адамса, имеющий четвертый порядок точности и использующий на каждом шаге результаты предыдущих четырех. Именно его и называют обычно методом Адамса. Рассмотрим этот метод.

Пусть найдены значения в четырех последовательных узлах . При этом имеются также вычисленные ранее значения правой части . В качестве интерполяционного многочлена можно взять многочлен Ньютона. В случае постоянного шага конечные разности для правой части в узле имеют вид .

Тогда разностная схема четвертого порядка метода Адамса запишется в виде .

Сравнивая метод Адамса с методом Рунге — Кутта той же точности, отмечаем его экономичность, поскольку он требует вычисления лишь одного значения правой части на каждом шаге. Но метод Адамса неудобен тем, что невозможно начать счет по одному лишь известному значению . Расчет может быть начат лишь с узла . Значения необходимые для вычисления , нужно получить каким-либо другим способом , что существенно усложняет алгоритм. Кроме того, метод Адамса не позволяет изменить шаг в процессе счета; этого недостатка лишены одношаговые методы.

Метод Милна

Пусть на отрезке [a, b] требуется найти численное решение дифференциального уравнения с начальным условием . Разобьем отрезок [a, b] на n равных частей точками , где h=(b-a)/n – шаг интегрирования. Используя начальные данные, находим каким-либо способом последовательные значения искомой функции y(x). Таким образом, становится известным . Приближения и для следующих значений последовательно находятся по формулам Милна

– где .

Абсолютная погрешность значения приближенно равна .

Пример. Дано дифференциальное уравнение y’=y-x, удовлетворяющие начальному условию x0=0, y(x0)=1,5. Вычислить с точность до 0,01 значение решения этого уравнения при x=1,5.

Решение. Выберем начальный шаг вычисления. Из условия h4<0,01 получим h=0,25 Составим таблицу

i

xi

yi

y’i=f(xi, yi)=yi-xi

y'i= f(xi, yi)=yi-xi

εi

0

1

2

3

4

5

6

0

0,25

0,50

0,75

1,00

1,25

1,50

1,5000

1,8920

2,3243

2,8084

1,5000

1,6420

1,8243

2,0584

3,3588

3,9947

4,7402

2,3588

2,7447

3,2402

3,3590

3,9950

4,7406

7*10-5

10-5

1,4*10-5

Получаем ответ y=(1,5)=4,74.

Краевые задачи для обыкновенных дифференциальных уравнений

На прак­тике приходится часто решать задачи, когда условия задаются при двух значениях независимой пере­менной (на концах рассматриваемого отрезка). Такие задачи, называемые краевыми, получаются при решении уравнений высших порядков или систем уравнений. Стандартная постановка краевой задачи для обыкновенных дифференциальных уравнений выглядит следующим образом

, а дополнительные условия ставятся более, чем в одной точке отрезка интегрирования уравнений (в этом случае порядок системы не может быть меньше второго): , , .

Общая классификация методов решения краевых задач: существуют точные, приближенные и численные методы.

6. Приближенные методы решения дифференциальных уравнений с частными производными

Кроме обычных дифференциальных уравнений существуют так называемые дифференциальные уравнения с частными производными. Далее они будут рассмотрены более подробно.

Классификация дифференциальных уравнений второго порядка

Рассмотрим уравнение второго порядка , где - функции и . Говорят, что указанное уравнение в области принадлежит гиперболическому типу, если в этой области . Если , то уравнение в области принадлежит параболическому типу. Если , то уравнение принадлежит эллиптическому типу.

Уравнение называется каноническим уравнением гиперболического типа.

Уравнение называется каноническим уравнением параболического типа.

Уравнение называется каноническим уравнением эллиптического типа.

Дифференциальное уравнение называется уравнением характеристик уравнения .

Если последнее уравнение гиперболического типа, то уравнение характеристик имеет два интеграла: т.е. существуют два семейства вещественных характеристик.

С помощью замены переменных , дифференциальное уравнение приводится к каноническому виду: . Для уравнения параболического типа оба семейства характеристик совпадают, т.е. уравнение характеристик дает лишь один интеграл .

В этом случае осуществляем замену переменных , , где — какая-нибудь функция, для которой . После замены переменных получаем уравнение . Для уравнения эллиптического типа интегралы уравнения характеристик имеют вид , где и — вещественные функции.

Полагая и , приводим уравнение к виду .

Постановка краевых задач

Классическим решением краевой задачи называются всяка функция, удовлетворяющая дифференциальному уравнению в каждой точке внутри области задания этого уравнения и непрерывная в рассматриваемой области, включая границу. Соответствующую постановку краевой задачи называют классической. Существует несколько таких задач:

  1. Задача Коши для бесконечной области. Рассмотрим эту задачу на примере

уравнения колебания струны и уравнения теплопроводности.

Рассмотрим процесс колебания тонкой бесконечной струны под действием непрерывно распределенной внешней силы с плотностью f. Предположим, что сила действует в одной плоскости – плоскости колебания струны (x, u), а струна является гибкой упругой нитью. Пусть величина натяжения, возникающая в струне вследствие ее изгиба, подчиняется закону Гука, а сами колебания достаточно малы. Тогда величина смещения u (x, t) удовлетворяет уравнению колебания струны: . Для однозначности процесса необходимо задать еще начальное смещение и начальное распределение скоростей. Математически это соответствует заданию начальных условий: . Требуется найти классическое решение уравнения, удовлетворяющие начальным условиям. Сформулированная таким образом задача называется задачей Коши для гиперболического уравнения.

Исследуем теперь процесс распределения температуры в тонком бесконечном стержне. Предполагается, что тепловой поток подчиняется закону Фурье, а изменение температуры тела пропорционально количеству теплоты, сообщаемой телу. Предположим, что внутри стержня может выделяться и поглощаться теплота, характеризуемая плотностью тепловых источников f. Тогда распределение температуры в стержне описывается уравнением теплопроводности: . Для однозначного задания процесса необходимо указать начальное распределение температуры. Это соответствует заданию начального условия: . Требуется найти классическое решение уравнения, удовлетворяющие начальным условиям. Сформулированная таким образом задача называется задачей Коши для параболического уравнения.

  1. Стационарная задача (задача без начальных данных). Рассмотрим установившийся

режим распределения температуры в ограниченной тонкой пластине произвольной формы с гладкой границей. Пусть функция u(x, y) выражает температуру каждой точки пластины. При обычных законах распространения тепла функция u(x, y) удовлетворяет уравнению Пуассона: , где функция а задает плотность тепловых источников пластины. В случае отсутствия источника (f=0) данное уравнение называется уравнением Лапласа: . Для однозначного описания процесса необходимо задать тепловой режим на границе пластины. Это может быть сделано с помощью задания распределения температуры на границе или распределения теплового потока. Возможен также режим теплового равновесия излучающего тела с окружающей средой.

В зависимости от теплового режима на границе получаются три граничных условия для функции u(x, y). Пусть Г – граница рассматриваемой области D – определения уравнения Лапласа. Математическая формулировка граничных условий может быть задана в следующем виде:

граничное условие I рода: ;

граничное условие II рода: ;

граничное условие III рода: .

Производная берется по внешней нормали к кривой Г; λ>0 – коэффициент теплопроводности; φ0, φ1, φ2 – заданные на Г функции, причем φ2 есть произведение коэффициента теплопроводности на температуру внешней среды, соприкасающейся с телом.

Таким образом, краевая задача заключается в том, чтобы найти классическое решение уравнения Пуассона или Лапласа, удовлетворяющее одному из граничных условий.

  1. Смешанная краевая задача. Рассмотрим задачу распространения тепла в тонком

стержне единичной длины. Поместим один из концов в точку x=0, а другой – в точку x=1. Распределение температуры в таком стержне в течение некоторого интервала времени 0 , с начальным условием , а для единственности решения в этом случае необходимо еще задать температурный режим на концах стержня. Это можно сделать с помощью граничных условий, аналогичных тем, которые были сформулированы для уравнений Пуассона и Лапласа.

Граничное условие I рода (на конце стержня x=0 заданна температура): .

Граничное условие II рода (на конце стержня x=0 задан тепловой поток): .

Граничное условие III рода: .

Для другого конца стержня x=1 правые части граничных условий заменяются соответственно на ψ0(t), ψ1(t), ψ2(t). Заметим, что начальное и граничное условия должны удовлетворять так называемым условиям сопряжения, т.е. при условии I рода u0(0)=φ0(0), при условии II рода u0x(0)=φ1(0), при условии III рода -u0x(0)+λu0(0)=φ2(0). Аналогичные условия сопряжения должны выполнятся и на другом конце стержня x=1.

Сформулируем одну из возможных краевых задач. Найти классическое решение уравнения , удовлетворяющее начальному условию и следующим граничным условиям . Эта задача обычно называется первой краевой задачей для уравнения теплопроводности. Соответственно краевые задачи с граничными условиями II роди или III называются второй и третьей краевой задачей для уравнения теплопроводности.

Метод конечных разностей (метод сеток)

Численные методы, основанные на разностной аппроксимации производных называется разностным методом, методом конечных разностей или методом сеток.

Пусть заданно линейное дифференциальное уравнение, записанное в символическом виде: . Здесь u – искомое решение уравнения; L – некоторый дифференциальный оператор, сокращенно обозначающий соответствующую дифференциальную операцию; f – правая часть уравнения (заданная функция).

Для единственного решения данного уравнения к нему необходимо присоединить краевые условия: .

Разностный метод решения этих двух задач можно представить в виде двух этапов:

  1. построение разностной схемы, аппроксимирующей данную непрерывную задачу;

  2. получение решения разностной задачи и оценка погрешности этого решения.

Для построения разностной схемы первым шагом является замена области непрерывного изменения аргументов областью дискретного их изменения – сеточной областью , т.е.множеством точек (xn, ym), называемых узлами сетки. Для квадрата сеточную область можно построить следующим образом. Проведем прямые . Множество точек пересечения этих прямых и составит сеточную область, а сами точки образуют узлы сетки. Всякая функция , определенная на ссеке , называется сеточной функцией и обозначается .

Второй шаг в построении разностной схемы состоит в аппроксимации дифференциального выражения Lu некоторым разностным выражением, а функцию непрерывного аргумента f – сеточной функцией, т.е. в построение некоторого разностного аналога для данного уравнения, при данных краевых условиях.

Такая аппроксимация приводит к системе алгебраических уравнений относительно значений некоторой сеточной функции . Эту систему можно записать в следующем виде:

Где Lh и φh – разностные операторы, аппроксимирующие соответственно L и l; υh – искомая сеточная функция, аппроксимирующая решение u; fh, φh – заданные сеточные функции, аппроксимирующие f и φ.

Совокупность разносных уравнений, аппроксимирующих исходную задачу – есть разностная схема. Рассмотрим их подробнее на примерах уравнения теплопроводности и колебания струны.

Разностные схемы для решения уравнения теплопроводности (параболический тип)

Рассмотрим первую краевую задачу для уравнения теплопроводности в прямоугольнике . Требуется найти непрерывное в решение задачи:

В области введем прямоугольную равномерную сетку {xn, tk} с шагом h=1/N по координате x и с шагом τ=T/M по координате t:

.

Производные левой части уравнения аппроксимируем следующим разностными выражениями:

В соответствии с данной аппроксимацией построим два разностных аналога уравнения с неизвестной сеточной функцией υ:

Здесь - значение некоторой сеточной функции f, соответствующей правой части уравнения . Для первой разностной схемы , а для второй - .

Начальное и граничное условия для первой краевой задачи аппроксимируются точно:

Для второй и третьей краевых задач граничные условия аппроксимируются на основе разностных выражений.

Полагая r=τ/h2 получим - для первой разностной схемы, - - для второй разностной схемы.

Анализ показывает, что погрешность аппроксимации схем есть .

Разностные схемы для решения уравнения колебания струны (гиперболический тип)

Рассмотрим первую краевую задачу для уравнения колебания струны в прямоугольнике . Требуется найти непрерывное в решение задачи:

Применение метода конечных разностей к решению задачи по существу мало чем отличается от его применения к уравнению теплопроводности. Область покрывается сеткой . Отличие заключается в приближении второй производной по переменной t:

.

Разностная аппроксимация принимает вид

.

Начальные условия аппроксимируются следующим образом: .

Граничные условия аппроксимируются точно так же, как и для уравнения теплопроводности: .

Значение является фиктивным неизвестным, которое можно определить по формуле: , где γ=τ/h.

Анализ показывает, что погрешность аппроксимации схем есть .

Список литературы

  1. Демидович Б.П., Марон И.А. Основы вычислительной математики. Наука, 1970.

  1. Минкова Р.М., Вайсбурд Р.А. Методы вычислительной математики. УПИ, 1981.

  1. Боглаев Ю.П. Вычислительная математика и программирование. Высшая школа, 1990.

  1. Кацман Ю.Я. Прикладная математика. Численные методы. ТПУ, 2000.

23


Характеристики

Тип файла
Документ
Размер
1,01 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6358
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее