DIP_II_5 (675839), страница 2
Текст из файла (страница 2)
З малюнку видно, що 2 судна В і А рухаються перпендикулярно один одному, тому відстань між ними можемо записати, за теоремою Піфагора,
. А відстані ми можемо записати за відомими швидкостями:
,
.
Тому . Ми отримали функцію, яка характеризує зміну відстані між суднами в залежності від часу. Дослідимо цю функцію на мінімум.
Знайдемо похідну . Відшукаємо критичні точки, проміжки зростання та спадання функції на цих проміжках та знайдемо точку екстремуму:
на проміжку (-;
),
на проміжку (
;), тобто
tm= - точка мінімуму функції l.
В момент часу tm= відстань між суднами буде мінімальною.
В сильному класі, для розширення кругозору учнів, та розширення можливостей застосування похідної можна розглянути задачі геометричного та біологічного типу, при вивченні теми “Найбільше та найменше значення функції”.
Приклад 1. Для будівництва будинку прямокутної форми зображеного на плані темним прямокутником з площею м2 відведено ділянку прямокутної форми, межі якої повинні знаходитись від будинку на відстані 36 і 16 метрів. Які розміри потрібно надати будинку, щоб площа ділянки ABCD була найменшою ?
Розв’язання
П означимо розміри будинку через
і
.
Площа будинку 400 м2, тобто м2.
Враховуючи відстані від будинку до межі отримаємо довжини меж: AD= і AB=
м.
Запишемо площу ділянки як функцію сторони х:
(х) =
.
Для знаходження мінімальної площі ділянки скористаємося властивістю похідної для дослідження цільової функції на мінімум.
. Прирівняємо до нуля і отримаємо значення:
. Беремо додатне значення змінної х,
- бо сторона.
Дослідимо знак похідної на проміжках:
Похідна змінює знак з “–“ на “+”, тобто буде точкою мінімуму. А значення функції в цій точці
.
Приклад 2. Швидкість зростання популяції x задана формулою y=0,001x(100-x) (час t виражено в днях). При якій чисельності популяції ця швидкість максимальна ? Скільки особин повинна містити рівноважна популяція, щоб швидкість зростання її спала до нуля?
Розв’язання
В цьому прикладі y – це функція, яку необхідно дослідити на максимум. Тому знайдемо першу похідну: y=0,1-0,002x. Знайдемо критичні точки, прирівнявши її до нуля: x=50. Ця точка є точкою максимуму функції. Тобто при чисельності 50 особин, швидкість зростання популяції буде максимальною.
Тепер необхідно перевірити, чи є таке число особин, при якому швидкість зростання популяції спадає до нуля. Прирівнюємо швидкість до нуля 0,001x(100-x)=0, і отримаємо значення шуканої чисельності х=0 або х=100, нуль відкидаємо, бо не задовольняє умову. Тому при чисельності в 100 особин, швидкість зростання популяції буде рівна нулю.
§4. ЧАСТКОВО-ПОШУКОВИЙ МЕТОД
Цей метод вимагає майже самостійної роботи учнів, а вчитель лише спрямовує мислення учнів до певних висновків.
Цим методом краще користуватись, коли необхідно закріпити пройдений матеріал чи певну тему, або для перевірки підготовленості учнів до вивчення певної теми.
Розглянемо використання методу на прикладі вивчення періодичності функції.
Варто наступним чином розпочати урок.
Вчитель повинен показати, які процеси існують в математиці чи фізиці і як вони можуть повторюватись. Це може бути обертання Місяця навколо Землі, коливання маятника в годиннику, повторення значень функції через певний крок та інше.
С початку можна намалювати схематично графік і показати учням, що через певний крок значення функції є однаковими, і немає значення в якому напрямку ми будемо рухатись по осі OX.
П отім можна намалювати учням графік вже відомої їм функції
.
Учні помічають, що значення функції повторюються через 2П.
Вчитель звертає увагу на те, що функція має те саме значення і в точці , і в точці
, і в точці
,
,
і мінімальне число, яке додається до значення аргументу, називається періодом, позначають його буквою Т.
Учні повинні спробувати вже сформулювати означення періодичної функції, хоча вчитель може допомагати.
Означення. Функція називається періодичною з періодом Т
, якщо для довільного
з області визначення значення функції в точках x, x+Т, x-Т рівні. Тобто
.
Потім переходять до розв’язування прикладів.
§5. ДОСЛІДНИЦЬКИЙ МЕТОД
Цим методом користуються вже на певному етапі навчання учнів, коли учні вже здатні логічно мислити, робити самостійні висновки. Також це корисно для розвитку логічного мислення. Користування цим методом покращує працездатність учнів і викликає в них зацікавленість, розвиває самостійність в дослідженні певних закономірностей чи властивостей певних об’єктів.
Розглянемо цей метод на прикладі дослідження функції з використанням похідної.
Приклад1. Дослідити функцію і побудувати її графік: .
Розв’язування
1) Область визначення функції - множина дійсних чисел, бо функція є многочленом.
2) Функція не є ні парною ні непарною, бо і область визначення функції симетрична відносно початку координат.
3) Має точку перетину з віссю : при
, тобто точка з координатами
.
4) Має точки перетину з віссю :
;
;
або
. Тобто точки з координатами
,
.
5) Знаходимо максимуми і мінімуми функції.
Знайдемо критичні точки. Для цього знайдемо першу похідну функції: .
Прирівнявши похідну до нуля отримаємо три критичні точки:
х= -1, х= 0, х= 1.
Знайдемо серед них точки максимуму і мінімуму.
При переході через точку х= -1 похідна змінює знак з “+” на “-” – точка максимума, а при переході через точку х=1, похідна змінює знак з “-” на “+” – точка мінімума. А при переході через точку х=0 – не міняє знаку.
6) Дослідимо функцію на точки перегину:
або
- отримали точки підозрілі на точки перегину.
Учні складають таблицю:
З таблиці видно, що функція має максимум в точці
і мінімум в точці
.
Будуємо сам графік використовуючи отримані дані з таблиці. Спочатку учні відмічають на графіку точки максимуму і мінімуму, точки перетину з осями, а потім будують графік даної функції.
Приклад2.За даним рівнянням руху авто знайти його швидкість (при t = 2 сек.) ; момент часу, коли авто почало рухатись в зворотному напрямку та відстань, на яку воно відійшло від деякого пункту (початок руху) до розвороту.
Розв’язання
Бажано спочатку намалювати графік руху авто, це спростить розв’язування задачі, та дасть можливість зрозуміти, яким чином рухалось авто.
Знаходимо точки перетину графіка функції з віссю ОХ: t3 - 4t = 0;
t = 0, t = ± 2. (t = -2 не розглядаємо, бо час t >0).
Знаходимо точки екстремуму функції:
; 3t 2 – 4 = 0; t =
.
Значення - не задовольняє умові
. Перевіримо як змінює знак похідна при переході через точку
.
При переході через цю точку, похідна змінює свій знак з “–” на “+”, тобто це точка мінімуму.
М алюємо малюнок.
З малюнку видно, що в момент часу t = авто знаходилось на максимальній відстані від деякого пункту (хоч і рухалося в зворотному напрямку).
Тому в момент часу t = авто змінило напрям руху.
Відстань в цей момент була: =
.
(стоїть модуль, бо відстань повинна бути додатна).
Похідна від відстані це є швидкість, яку ми вже знайшли:
, тому через 2 секунди після початку руху авто мало швидкість
м/с.
§6 . МЕТОД ДОЦІЛЬНИХ ЗАДАЧ
В багатьох випадках , в певних темах цей метод застосовується не дуже часто, але при продовженні деякої теми, чи при вивченні теми з розв’язання практичних задач краще скористатися ним, тоді в учнів при вивченні теми буде повніше розуміння вивченого матеріалу. Як вже було вище сказано, суть методу в тому, що розгляд нової теми розпочинається з наведення деяких прикладів, що можуть допомогти учням краще орієнтуватися в тому, про що йде мова в даній темі, або протягом уроку посилатися на деякі з них.
Розглянемо його використання на прикладі вивчення теми “Функції та їх графіки”.
Вчитель на початку уроку, але вже після означення поняття функції, може наводити приклади, будувати з учнями графіки, а потім на основі графіків вивести певні закономірності їх побудови і запропонувати учням використовувати ці закономірності при подальшому розв’язуванні прикладів.
П обудуємо графіки таких елементарних функцій:
Мал. 16 Мал. 17 Мал.18
Учні помічають, що другий графік (Мал. 17.) зсунутий на 2 одиниці вправо, а в формулі стоїть знак мінус перед цією цифрою. Третій графік (Мал. 18.) відрізняється від другого тим, що не тільки зсунутий по осі OX, а й по осі OY – на 1, але тут вже спостерігається відповідність знаку.
Після розглядання цих прикладів учні можуть сформулювати основні правила побудови графіків не тільки степеневих функцій, а і графіків довільних функцій.