progonka (675832)

Файл №675832 progonka (Метод прогонки решения систем с трехдиагональными матрицами коэффициентов)progonka (675832)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Магнитогорский Государственный Технический Университет имени Г.И.Носова

Кафедра математики

Реферат

Тема: Метод прогонки решения систем с трехдиагональными

матрицами коэффициентов

Выполнил: студент группы ЭА-04-2

Романенко Н.А.

Проверил: Королева В.В.

Магнитогорск 2004

Часто возникает необходимость в решении линейных алгебраических систем, матрицы которых, являясь слабо заполненными, т.е. содержащими немного ненулевых элементов, имеют определённую структуру. Среди таких систем выделим системы с матрицами ленточной структуры, в которых ненулевые элементы располагаются на главной диагонали и на нескольких побочных диагоналях. Для решения систем с ленточными матрицами коэффициентов метод Гаусса можно трансформировать в более эффективные методы.

Рассмотрим наиболее простой случай ленточных систем, к которым, как увидим впоследствии, сводится решение задач сплайн-интерполяции функций, дискретизации краевых задач для дифференциальных уравнений методами конечных разностей, конечных элементов и др. А именно, будем искать решение такой системы, каждое уравнение которой связывает три “соседних” неизвестных:

bixi-1+cixi+dixi=ri (1)

где i=1,2,...,n; b1=0, dn=0. Такие уравнения называются трехточечными разностными уравнениями второго порядка. Система (1) имеет трёхдиагональную структуру, что хорошо видно из следующего, эквивалентного (1), векторно-матричного представления:

c1 d1 0 0 ... 0 0 0 x1 r1

b2 c2 d2 0 ... 0 0 0 x2 r2

0 b3 c3 d3 ... 0 0 0 x3 r3

. . . . ... . . . * ... = ...

0 0 0 0 ... bn-1cn-1 dn-1 xn-1 rn-1

0 0 0 0 ... 0 bn cn xn rn

Как и в решении СЛАУ методом Гаусса, цель избавится от ненулевых элементов в поддиаганальной части матрицы системы, предположим, что существуют такие наборы чисел δi и λi (i=1,2,...,n), при которых

xi= δixi+1+ λi (2)

т.е. трехточечное уравнение второго порядка (1) преобразуется в двухточечное уравнение первого порядка (2). Уменьшим в связи (2) индекс на единицу и полученое выражение xi-1= δi-1xi+ λi-1 подставим в данное уравнение (1):

biδi-1 xi+ bi λi-1+ cixi+ dixi+1= ri

откуда

xi= -((di /( ci+ biδi-1)) xi-1+(ri - bi λi-1)/( ci - bi δi-1)).

Последнее равенство имеет вид (2) и будет точно с ним совпадать, иначе говоря, представление (2) будет иметь место, если при всех i=1,2,…,n выполняются рекуррентные соотношения

δi = - di /( ci+ biδi-1) , λ i=(ri - bi λi-1)/( ci - bi δi-1) (3)

Легко видеть, что, в силу условия b1=0, процесс вычисления δi , λi может быть начат со значений

δ1 = - d1/ c1 , λ1 = r1/ c1

и продолжен далее по формулам (3) последовательно при i=2,3,...,n, причем при i=n, в силу dn=0, получим δn=0.Следовательно, полагая в (2) i=n,будем иметь

xn = λn = (rnbn λn-1)/( cnbn δn-1)

(где λn-1 , δn-1уже известные с предыдущего шага числа). Далее по формулам (2) последовательно находятся xn-1 , xn-2 ,…, x1 при i=n-1, n-2,...,1 соответственно.

Таким образом, решение уравнений вида (1) описываем способом, называемым методом прогонки, сводится к вычислениям по трём простым формулам: нахождение так называемых прогоночных коэффициентов δi , λi по формулам (3) при i=1,2,…,n (прямая прогонка) и затем неизвестных xi по формуле (2) при i=n-1, n-2,...,1 (обратная прогонка).

Для успешного применения метода прогонки нужно, чтобы в процессе вычислений не возникало ситуаций с делением на нуль, а при больших размерностях систем не должно быть строгого роста погрешностей округлений.

Будем называть прогонку корректной, если знаменатели прогоночных коэффициентов (3) не обращаются в нуль, и устойчивой, если |δi|<1 при всех i{1,2,...,n }.

Приведем простые достаточные условия корректности и устойчивости прогонки, которые во многих приложениях метода автоматически выполняются.

Теорема

Пусть коэффициенты bi и di уравнения (1) при i=2,3,...,n-1 отличны от нуля и пусть

|ci|>|bi|+|di| i=1,2,…,n. (4)

Тогда прогонка (3), (2) корректна и устойчива (т.е. сi+biδi-10,i|<1).

Д о к а з а т е л ь с т в о. Воспользуемся методом математической индукции для установления обоих нужных неравенств одновременно.

При i=1, в силу (4), имеем:

|c1|>|d1|≥0

- неравенство нулю первой пары прогоночных коэффициентов, а так же

1|=|- d1/ c1|<1

Предположим, что знаменатель (i-1)-x прогоночных коэффициентов не равен нулю и что i-1|<1. Тогда, используя свойства модулей, условия теоремы и индукционные предположения, получаем:

|сi+biδi-1|≥|ci| - |biδi-1|>|bi|+|di| - |bi|*|δi-1|= |di|+|bi|(1 - | δi-1|)> |di|>0

а с учетом этого

|δi|=|- di/ сi+biδi-1|=|δi|/| сi+biδi-1|<|δi|/|δi|=1

Следовательно, сi+biδi-1 0 и i|<1 при всех i{1,2,...,n }, т.е. имеет место утверждаемая в данных условиях корректность и устойчивость прогонки. Теорема доказана.

Пусть А – матрица коэффициентов данной системы (1), удовлетворяющих условиям теоремы, и пусть

δ1= - d1/ c1 , δi=|- di/ ci+biδi-1 (i=2,3,...,n-1), δn=0

- прогоночные коэффициенты, определяемые первой из формул (3), а

i= сi+biδi-1 (i=2,3,...,n)

- знаменатели этих коэффициентов (отличные от нуля согласно утверждению теоремы). Непосредственной проверкой легко убедится, что имеет место представление A=LU, где

c1 0 0 0 ... 0 0 0

b2 2 0 0 ... 0 0 0

L= 0 b3 3 0 ... 0 0 0

…………………………

0 0 0 0 ... bn-1 n-1 0

0 0 0 0 ... 0 bn n


1 -δ1 0 0 ... 0 0 0

0 1 δ2 0 ... 0 0 0

U= 0 0 1 δ3 ... 0 0 0

…………………………

0 0 0 0 ... 0 1 -δn-1

0 0 0 0 ... 0 0 1

Единственное в силу утверждение теоремы LU-разложения матриц. Как видим, LU-разложение трехдиагональной матрицы А может быть выполнено очень простым алгоритмом, вычисляющем i δi при возрастающих значениях i. При необходимости попутно может быть вычислен

n

det A = c1i .

i=2

В заключение этого пункта заметим, что, во-первых, имеются более слабые условия корректности и устойчивости прогонки, чем требуется в теореме условие строгого диагонального преобладания в матрице А. Во-вторых, применяется ряд других, отличных от рассмотрения нами правой прогонки, методов подобного типа, решающих как поставленную здесь задачу (1) для систем с трехдиагональными матрицами (левая прогонка, встречная прогонка, немонотонная, циклическая, ортогональная прогонки и т.д.), так и для более сложных систем с матрицами ленточной структуры или блочно-матричной структуры (например, матричная прогонка).

Список используемой литературы

В.М. Вержбитский «Численные методы. Линейная алгебра и нелинейные уравнения», Москава «Высшая школа 2000».

Характеристики

Тип файла
Документ
Размер
58 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6374
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее