Kramer1 (675827)
Текст из файла
Министерство рыбного хозяйства
Владивостокский морской колледж
ТЕМА: “ Системы 2-х , 3-х линейных уравнений.
Правило Крамера. ”
г. Владивосток
ОГЛАВЛЕНИЕ.
1.Краткая теория .
2. Методические рекомендации по выполнению заданий.
3.Примеры выполнения заданий.
4.Варианты заданий.
5.Список литературы.
1. КРАТКАЯ ТЕОРИЯ .
________________________________
Пусть дана система линейных уравнений
Коэффициенты a11,12,..., a1n, ... , an1 , b2 , ... , bn считаются заданными .
Вектор -строка x1 , x2 , ... , xn - называется решением системы (1), если при подстановке этих чисел вместо переменных все уравнения системы (1) обращаются в верное равенство.
Определитель n-го порядка a ij , составленный из коэффициентов при неизвестных , называется определителем системы (1). В зависимости от определителя системы (1) различают следующие случаи.
a). Если , то система (1) имеет единственное решение, которое может быть найдено по формулам Крамера : x1= , где
определитель n-го порядка i ( i=1,2,...,n) получается из определителя системы путем замены i-го столбца свободными членами b1 , b2 ,..., bn.
б). Если , то система (1) либо имеет бесконечное множество решений , либо несовместна ,т.е. решений нет.
2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
__________________________________________
1. Рассмотрим систему 3-х линейных уравнений с тремя неизвестными.
1. В данной системе составим определитель и вычислим.
2. Составить и вычислить следующие определители :
3. Воспользоваться формулами Крамера.
3. ПРИМЕРЫ.
_______________
Проверка:
Проверка:
Ответ: x=0,5 ; y=2 ; z=1,5 .
4. ВАРИАНТЫ ЗАДАНИЙ.
___________________________
ВАРИАНТ 1.
Решить системы:
ВАРИАНТ 2.
Решить системы:
ВАРИАНТ 3.
Решить системы:
ВАРИАНТ 4.
Решить системы:
ВАРИАНТ 5.
Решить системы:
ВАРИАНТ 6.
Решить системы:
ВАРИАНТ 7.
Решить системы:
ВАРИАНТ 8.
Решить системы:
1. Г.И. КРУЧКОВИЧ.
“Сборник задач по курсу высшей математике.”
М. “Высшая школа”, 1973 год.
2. В.С. ШИПАЧЕВ.
“Высшая математика.”
М. “Высшая школа”, 1985 год.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.