84352 (675780)
Текст из файла
12
Конспекты лекций по математической логике.
-
Теория алгоритмов
1.1 Различные подходы к определению алгоритма:
10. Неформальное понятие алгоритма (последовательность инструкций для выполнения действия).
20. Машина с неограниченными регистрами (МНР).
30 Машина Тьюринга – Поста (МТ-П).
40 Нормальные алгоритмы Маркова (НАМ).
1.1.1 Машина с неограниченными регистрами (МНР).
И меется некое устройство, в котором счетное число ячеек памяти (регистров), в которых хранятся целые числа.
Допустимые команды:
Z(n) - обнуление регистра Rn.
S(n) - увеличение числа в регистре Rn на 1.
T(m,n) - копирует содержимое Rm в регистор Rn.
I(p,q,n) - если содержимое Rp = Rq то выполняется команда с номером n , если нет
следующая.
Программа для МНР должна быть последовательностью команд Z, S, T, I с определенным порядком, выполняемые последовательно.
Тезис Черча (Churcha): Первое и второе определение алгоритма эквивалентны между собой. Любой неформальный алгоритм может быть представлен в программе для МНР.
1.1.2 Машина Тьюринга - Поста.
Имеется устройство просматривающее бесконечную ленту, где есть ячейки содержащие элементы алфавита: , где
- пустой символ (пустое слово), который может принадлежать и не принадлежать А. Также существует управляющая головка (устройство) (УУ)/(УГ), которая в начальный момент расположена в определенном месте, в состоянии
. Также существуют внутренние состояния машины:
Слово в данном алфавите - любая конечная упорядоченная последовательность букв данного алфавита, притом длина слова это количество букв в нем (у пустого слова длина 0).
Допустимые команды:
Последовательность команд называется программой, если в этой последовательности не встречается команд с одинаковыми левыми частями. Машина останавливается если она не находит команды с левой частью подобной текущей. |
1.1.3 Нормальные алгоритмы Маркова.
Тип машины перерабатывающий слова, в которой существует некий алфавит , для которого W - множество всех слов.
Допустимые команды: (Для машин этого типа важна последовательность команд.)
1.1.4 Реализация функции натурального переменного.
но мы допускаем не всюду определенную функцию.
притом , если f не определена, то и программа не должна ничего выдавать.
притом , если f не определена, то и программа не должна ничего выдавать.
( , а числа представляются в виде
,например
.)
1.2 Эквивалентность трех подходов к понятию алгоритм.
1.2.1 Теорема об эквивалентности понятия вычислимой функции.
-
Если существует программа МНР, которая вычисляет эту функцию.
-
Если существует программа МТ-П, которая вычисляет эту функцию.
-
Если существует программа НАМ, которая вычисляет эту функцию.
Т еор.: Классы функций вычислимых на МТ-П, с помощью НАМ и с помощью МНР совпадают.
Пусть которая вычисляется на МТ-П, вычислим её на НАМ.
МТ-П:
Команда МТП: преобразуется по правилам:
2. Булевы функции.
2.1 Основные определения
2.1.1 Декартово произведение
- мн-во всевозможных упорядоченных пар элементов из А и В.
2.1.2 Декартова степень произвольного множества.
Опр: - множество всевозможных упорядоченных наборов длины n , элементов множества А.
2.1.3 Определение булевой функции от n переменных.
Любое отображение - называется булевой функцией от n переменных, притом множество
2.1.4 Примеры булевой функции.
2.1.5 Основные булевы тождества.
2.2 Дизъюнктивные нормальные формы.
2.2.1 Основные определения.
- конечный алфавит из переменных.
S – длина элемента конъюнкции.
ДНФ – дизъюнкция нескольких различных элементарных конъюнкций.
Любая булева функция может быть представлена как ДНФ
2.2.2 Теорема о совершенной ДНФ.
Любая булева функция тождественно не равная 0 может быть разложена в ДНФ следующего вида:
Доказательство: , будем доказывать, что
.
-
Докажем, что
. Возьмем
он попадает в число суммируемых наборов и по нему будет проводиться сумирование.
2.2.3 Некоторые другие виды ДНФ.
Опр: - называется минимальной ДНФ, если она имеет
- наименьшую возможную длину из всех ДНФ данной функции.
Опр: - называется тупиковой ДНФ, если из неё нельзя выбросить ни одного слагаемого с сохранением булевой функции.
(Легко понять, что любая минимальная ДНФ является тупиковой, а обратное не верно.)
Опр: К-мерной гранью называется такое подмножество , которая является носителем некоторой элементарной конъюнкции длины: n-k.
Опр: Предположим дана функция и есть
. Грань называется отмеченной, если она целиком содержится в носителе Т.
Опр: Максимальная грань – это такая грань, которая не содержится ни в какой грани более высокой размерности.
Предложение: Любую отмеченную грань можно вложить в максимальную грань.
(Носитель любой функции можно разложить в объединение нескольких граней разной размерностей)
Предложение: Носитель любой функции разлагается в объединение всех своих максимальных граней.
Опр: Элементарная конъюнкция называется минимальной, если её носитель является максимальной гранью. Следовательно всякая булева функция разлагается в дизъюнкцию всех своих элементарных конъюнкций.
Опр: Сокращенная ДНФ – разложение данной булевой функции в соответствующие ДНФ, которые соответствуют объединению её максимальных граней.
Теор: Минимальная ДНФ может быть получена из сокращенной отбрасыванием некоторого количества слагаемых, возможно пустого.
3 Логические Исчисления.
3.1 Исчисления высказывания (ИВ).
3.1.1 Определения.
Опр: V – словом в алфавите А, называется любая конечная упорядоченная последовательность его букв.
Опр: Формативная последовательность слов – конечная последовательность слов и высказываний , если они имеют формат вида:
Опр: F – формулой ИВ, называется любое слово, входящее в какую-нибудь формативную последовательность.
Опр: Аксиомы – специально выделенное подмножество формул.
Reg – правила вывода ИВ (некоторые правила преобразования первого слова в другое).
- произвольное слово ИВ (формула)
Отображение действует так, что на место каждого вхождения символа а , пишется слово
.
3.1.2 Формальный вывод.(простейшая модель доказательства теоремы)
Опр: Последовательность формул ИВ, называется формальным выводом, если каждая формула этой последовательности имеет следующий вид:
Опр: Выводимый формулой (теоремой) ИВ называется любая формула входящая в какой-нибудь формальный вывод. - выводимая формула ИВ.
Правило одновременной подстановки.
Замечание: Если формула выводима, то выводима и
Возьмем формативную последовательность вывода
и добавим в неё
, получившаяся последовательность является формальным выводом.
(Если выводима то если
, то выводима
)
Теор: Если выводимая формула , то
(
- различные символы переменных) выводима
Выберем - символы переменных которые различны между собой и не входят не в одну из формул
, сделаем подстановку
и последовательно применим
и в новом слове делаем последовательную подстановку:
, где
- является формальным выводом.
3.1.3 Формальный вывод из гипотез.
Опр: Формальным выводом из гипотез (формулы), называется такая последовательность слов
, каждая из которых удовлетворяет условию:
если формулу
можно включить в некоторый формальный вывод из гипотез
.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.