84312 (675728), страница 3

Файл №675728 84312 (Комплексные числа) 3 страница84312 (675728) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

9.КВАДРАТНОЕ УРАВНЕНИЕ С КОМПЛЕКСНЫМ НЕИЗВЕСТНЫМ

Рассмотрим уравнение Z2 = a, где a – заданное действительное число, Z – неизвестное.

Это уравнение:

  1. имеет один корень, если a = 0.

  2. имеет два действительных корня Z1,2= , если a > 0.

  3. не имеет действительных корней, если a < 0. Но имеет два комплексных корня.

Запишем число a в виде a = (– 1)×(– a) = i2× = i2×( )2. Тогда уравнение Z2 = a запишется в виде: Z2 i2×( )2 = 0

т.е. (Z – i× )(Z + i× ) = 0

Следовательно, уравнение имеет два корня: Z1,2 = i×

Введенное понятие корня из отрицательного числа позволяет записать корни любого квадратного уравнения с действительными коэффициентами

a×Z2 + b×Z + c = 0

По известной общей формуле

Z1,2= (10)

Итак, при любых действительных a(a 0), b, c корни уравнения можно находить по формуле 10. При это если дискриминант, т.е. подкоренное выражение в формуле 10

D = b2 – 4×a×c

положителен , то уравнение a×Z2 + b×Z + c = 0 два действительных различных корня. Если D = 0, то уравнение a×Z2 + b×Z + c = 0 имеет один корень. Если D < 0, то уравнение a×Z2 + b×Z + c = 0 имеет два различных комплексных корня.

Комплексные корни квадратного уравнения обладают такими же свойствами, как и известные нам свойства действительных корней.

Сформулируем основные из них:

Пусть Z1,Z2 – корни квадратного уравнения a×Z2 + b×Z + c = 0, a 0. Тогда справедливы свойства:

  1. Теорема Виета: Z1 + Z2 = –

Z1×Z2 =

  1. При всех комплексных Z справедлива формула

a×Z2 + b×Z + c = a×(Z – Z1)×(Z – Z2)

Пример 5:

Z2 – 6·Z + 10 = 0

Д = b2 – 4·a·c

Д = 62 – 4·10 = – 4

– 4 = i2·4

Z1,2 =

Z1,2 =

Ответ: Z1 = Z2 = 3 + i

Пример 6:

3·Z2 +2·Z + 1 = 0

Д = b2 – 4·a·c

Д = 4 – 12 = – 8

Д = –1·8 = 8·i2

Z1,2 = =

Z1,2 =

Z1 = – ( )

Z2 = –

Ответ: Z1 = Z2 = –

Пример 7:

Z4 – 8·Z2 – 9 = 0

Z2 = t

t2 – 8·t – 9 = 0

Д = b2 – 4·a·c = 64 + 36 = 100

t1,2 = = = 4

t1 = 9 t2 = – 1

Z2 = 9 Z2 = – 1

Z1,2 = 3 Z =

Z3,4 = i

Ответ: Z1,2 = 3, Z3,4 = i

Пример 8:

Z4 + 2·Z2 – 15 = 0

Z2 = t

t2 + 2·t – 15 = 0

Д = b2 – 4·a·c = 4 + 60 = 64

t1,2 = = = –1 4

t1 = – 5 t2 = 3

Z2 = – 5 Z2 = 3

Z2 = – 1·5 Z3,4 =

Z2 = i2·5

Z1,2 = i

Ответ: Z1,2 = i , Z3,4 =

Пример 9:

Z2 = 24 – 10·i

Пусть Z = X + Y·i

(X + Y·i)2 = X2 + 2·X·Y·i –Y2

X2 + 2·X·Y·i – Y2 = 24 – 10·i

( X2 – Y2) + 2·X·Y·i = 24 – 10·i

Y = –

X2 = 24

умножим на X2 0

X4 – 24·X2 – 25 = 0

X2 = t

t2 – 24·t – 25 = 0

t1·t2 = – 25

t1 + t2 = 24

t1 = 25 t2 = – 1

X2 = 25 X2 = – 1 — нет решений

X1,2 = 5

X1 = 5 X2 = – 5

Y1 = – Y2 =

Y1 = – 1 Y2 = 1

Тогда:

Z1,2 = (5 – i)

Ответ: Z1,2 = (5 – i)

ЗАДАЧИ:

1 )




( 2 – Y)2 + 3·( 2 – Y)·Y + Y2 = 6

4 – 4·Y + Y2 + 6·Y – 3·Y2 + Y2 = 6

–Y2 + 2Y – 2 = 0 /–1

Y2 – 2Y + 2 = 0

Д = b2 – 4·a·c = 4 – 8 = – 4

– 4 = – 1·4 = 4· i2

Y1,2 = = = 1 i

Y1 = 1– i Y2 = 1 + i

X 1 = 1 + i X2 = 1– i

Ответ: {1 + i ; 1– i}

{1– i ; 1 + i}

2 )


— Возведем в квадрат

— Возведем в куб


w10× 12 = 1

w10× 10 × 2 = 1

(w× )10× 2 = 1

( )10× 2 = 1

т.к. w = A + B×i

= A – B×i

= (A + B×i)·( A – B×i) = A2 – (B×i)2 = A2 + B2 = 2 = w×

т.е. 20· 2 = 1

Возьмем модуль от обоих частей последнего уравнения:

20· 2 = 1

22 = 1

т.е.

= 1

Тогда из уравнения получим

2 = 1

т.е.

= 1

w1 = 1 w2 = –1

Подставим эти значения в первое уравнение данной системы и найдем численное значение Z

1) w1 = 1

Z6 = 1

1 = 1·( cos(2pk) + i·sin(2pk)), kÎZ

Z = r×(cosj + i×sinj)

r6×(cos6j + i×sin6j) = cos(2pk) + i·sin(2pk), kÎZ

r6 = 1 6j = 2pk

r = 1 j = , kÎZ

Z = cos + i·sin , kÎZ

k = 0,1,2...

k = 0

Z1 = cos0+ i×sin0 = 1 + 0 = 1

Z1 = 1

k = 1

Z2 = cos + i·sin = i = i

Z2 = i

k = 2

Z3 = cos + i·sin = – i

Z3 = – i

k = 3

Z4 = cosp + i·sinp = –1 + 0 = –1

Z4 = –1

k = 4

Z5 = cos + i·sin = – i

Z5 = – i

k = 5

Z6 = cos + i·sin = i

Z6 = i

Ответ: Z1 = 1, Z2 = i, Z3 = – i, Z4 = –1, Z5 = – i, Z6 = i

2) w2 = –1

Z6 = –1

–1 = 1·( cos(p + 2pk) + i·sin(p + 2pk)), kÎZ

Пусть Z = r×(cosj + i×sinj), тогда данное уравнение запишется в виде:

r6×(cos6j + i×sin6j) = cos(p + 2pk) + i·sin(p + 2pk), kÎZ

r6 = 1 6j = p + 2pk

r = 1 j = , kÎZ

Z = cos( ) + i·sin( ), kÎZ

k = 0,1,2...

k = 0

Z1 = cos + i·sin = i

Z1 = i

k = 1

Z2 = cos( ) + i·sin( ) = 0 + i = i

Z2 = i

k = 2

Z3 = cos( ) + i·sin( ) = – i

Z3 = – i

k = 3

Z4 = cos( ) + i·sin( ) = – i

Z4 = – i

k = 4

Z5 = cos( ) + i·sin( ) = 0 – i = – i

Z5 = – i

k = 5

Z6 = cos( ) + i·sin( ) = i

Z6 = i

Ответ: Z1 = i , Z2 = i, Z3 = – i , Z4 = – i, Z5 = – i, Z6 = i

3)

Доказать, что сумма двух комплексных чисел не превосходит сумму модулей этих чисел.

1 СПОСОБ:

Пусть Z1=X+Y×i и Z2=U+V×i

Доказать что:

Предположим противоположное:

> / т.к. корень существует только из неотрицательного числа, то можно возвести в квадрат обе части неравенства.

X2+2·X·U+U2+Y2+2·Y·V+V2 > X2+Y2+U2+V2+2·

2·(X·U+Y·V) > 2·

Если мы предположили верно, то X·U+Y·V > 0, а поэтому возведем в квадрат:

X2·U2+2·XU·Y·V+Y2·V2 > X2·U2 + X2·V2+Y2·U2+Y2·V2

2·X·Y·V·U > X2·V2+Y2·U2

X2·V2+Y2·U2 – 2·X·Y·V·U < 0

(X·V + Y·U)2 < 0

Это невозможно, т.к. A2 0, значит полученное нами неравенство неверно.

что и требовалось доказать

2 СПОСОБ:

Пусть Z1 и Z2 – два произвольных комплексных числа. Z1­– соответствует точке A, Z2 – соответствует точке B.

В силу неравенства треугольника

т.е.

Что и требовалось доказать.

25


Характеристики

Тип файла
Документ
Размер
2,61 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6924
Авторов
на СтудИзбе
266
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}