84312 (675728), страница 2
Текст из файла (страница 2)
Z2 – Z1 = (3 + 4·i) – (4 + 5·i) = –1 – i
6.ТРИГОНОМЕТРИЧЕСКАЯ ФОРМА
КОМПЛЕКСНОГО ЧИСЛА
Рисунок 5
Запись комплексного числа Z в виде A+B·i называется алгебраической формой комплексного числа. Помимо алгебраической формы используются и другие формы записи комплексных чисел.
Рассмотрим тригонометрическую форму записи комплексного числа. Действительная и мнимая части комплексного числа Z=A+B·i выражаются через его модуль
= r и аргумент j следующим образом:
A= r·cosj ; B= r·sinj.
Число Z можно записать так:
Z= r·cosj+ i·
·sinj = r·(cosj + i·sinj)
Z = r·(cosj + i·sinj) (2)
Эта запись называется тригонометрической формой комплексного числа.
r =
– модуль комплексного числа.
Число j называют аргументом комплексного числа.
Аргументом комплексного числа Z
0 называется величина угла между положительным направлением действительной оси и вектором Z, причем величина угла считается положительной, если отсчет ведется против часовой стрелки, и отрицательной, если производится по часовой стрелке.
Для числа Z=0 аргумент не определяется, и только в этом случае число задается только своим модулем.
Как уже говорилось выше
= r =
, равенство (2) можно записать в виде
A+B·i=
·cosj + i·
·sinj, откуда приравнивая действительные и мнимые части, получим:
Если sinj поделить на cosj получим:
Эту формулу удобней использовать для нахождения аргумента j, чем формулы (3). Однако не все значения j, удовлетворяющие равенству (4), являются аргументами числа A+B·i . Поэтому при нахождении аргумента нужно учесть, в какой четверти расположена точка A+B·i.
7.СВОЙСТВА МОДУЛЯ И АРГУМЕНТА
КОМПЛЕКСНОГО ЧИСЛА
С помощью тригонометрической формы удобно находить произведение и частное комплексных чисел.
Пусть Z1= r1·(cosj1 + i·sinj1), Z2 = r2·(cosj2 + i·sinj2). Тогда:
Z1Z2= r1·r2[cosj1·cosj2 – sinj1·sinj2 + i·( sinj1·cosj2 + cosj1·sinj2)]=
= r1·r2[cos(j1 + j2) + i·sin(j1 + j2)].
Таким образом, произведение комплексных чисел, записанных в тригонометрической форме, можно находить по формуле:
Z1Z2= r1·r2[cos(j1 + j2) + i·sin(j1 + j2)] (5)
Из формулы (5) следует, что при умножении комплексных чисел их модули перемножаются, а аргументы складываются.
Если Z1=Z2 то получим:
Z2=[r·(cosj + i·sinj)]2= r2·(cos2j + i·sin2j)
Z3=Z2·Z= r2·(cos2j + i·sin2j)·r·(cosj + i·sinj)=
= r3·(cos3j + i·sin3j)
Вообще для любого комплексного числа Z= r·( cosj + i·sinj)
0 и любого натурального числа n справедлива формула:
Zn =[ r·(cosj + i·sinj)]n= rn·( cosnj+ i·sinnj), (6)
которую называют формулой Муавра.
Частное двух комплексных чисел, записанных в тригонометрической форме, можно находить по формуле:
[ cos(j1 – j2) + i·sin(j1 – j2)]. (7)
Используя формулу 5
(cosj1 + i·sinj1)×( cos(–j2) + i·sin(–j2)) =
cos(j1 – j2) + i·sin(j1 – j2).
Пример 3:
Z3 = –8
Число –8 запишем в тригонометрической форме
8 = 8·( cos(p + 2pk) + i·sin(p + 2pk)), kÎZ
Пусть Z = r×(cosj + i×sinj), тогда данное уравнение запишется в виде:
r3×(cos3j + i×sin3j) = 8·( cos(p + 2pk) + i·sin(p + 2pk)), kÎZ
Тогда 3j =p + 2pk, kÎZ
r3 = 8
r = 2
Следовательно:
Z = 2·( cos(
) + i·sin(
)), kÎZ
k = 0,1,2...
k = 0
Z1 = 2·( cos
+ i·sin
) = 2·(
i) = 1+
×i
k = 1
Z2 = 2·( cos(
+
) + i·sin(
+
)) = 2·( cosp + i·sinp) = –2
k = 2
Z3 = 2·( cos(
+
) + i·sin(
+
)) = 2·( cos
+ i·sin
) = 1–
×i
Пример 4:
Z4 = 1
Число 1 запишем в тригонометрической форме
1 = 1·( cos(2pk) + i·sin(2pk)), kÎZ
Пусть Z = r×(cosj + i×sinj), тогда данное уравнение запишется в виде:
r4×(cos4j + i×sin4j) = cos(2pk) + i·sin(2pk)), kÎZ
4j = 2pk, kÎZ
r4 = 1
r = 1
k = 0,1,2,3...
k = 0
Z1 = cos0+ i×sin0 = 1 + 0 = 1
k = 1
k = 2
Z3 = cosp + i·sinp = –1 + 0 = –1
k = 3
Ответ: Z13 =
1
Z24 =
i
8.ВОЗВЕДЕНИЕ В СТЕПЕНЬ И ИЗВЛЕЧЕНИЕ КОРНЯ
Из формулы 6 видно, что возведение комплексного числа r·( cosj + i·sinj) в целую положительную степень с натуральным показателем его модуль возводится в степень с тем же показателем, а аргумент умножается на показатель степени.
[ r·(cosj + i·sinj)]n= rn·( cos nj + i·sin nj)
Число Z называется корнем степени n из числа w ( обозначается
), если Zn =w.
Из данного определения вытекает, что каждое решение уравнения Zn = w является корнем степени n из числа w. Другими словами, для того, чтобы извлечь корень степени n из числа w, достаточно решить уравнение Zn = w. Если w=0, то при любом n уравнение Zn = w имеет только одно решение Z= 0. Если w
0, то и Z
0, а, следовательно, и Z и w можно представить в тригонометрической форме
Z = r·(cosj + i·sinj), w = p·(cosy + i·siny)
Уравнение Zn = w примет вид:
rn·( cos nj + i·sin nj) = p·( cosy + i·siny)
Два комплексных числа равны тогда и только тогда, когда равны их модули, а аргументы отличаются слагаемыми, кратными 2p. Следовательно, rn = p и nj = y + 2pk, где kÎZ или r =
и j =
, где kÎZ.
Итак, все решения могут быть записаны следующим образом:
ZK=
[cos(
) + i·sin(
)], kÎZ (8)
Формулу 8 называют второй формулой Муавра.
Таким образом, если w
0, то существует ровно n корней степени n из числа w: все они содержатся в формуле 8. Все корни степени n из числа w имеют один и тот же модуль
, но разные аргументы, отличающиеся слагаемым, кратным числу
. Отсюда следует, что комплексные числа, являющиеся корнями степени n из комплексного числа w, соответствует точкам комплексной плоскости, расположенным в вершинах правильного n – угольника, вписанного в окружность радиуса
с центром в точке Z = 0.
Символ
не имеет однозначного смысла. Поэтому, употребляя его, следует четко представлять себе, что под этим символом подразумевается. Например, используя запись
, следует подумать о том, чтобы было ясно, понимается под этим символом пара комплексных чисел i и –i, или одно, то какое именно.
Уравнения высших степеней
Формула 8 определяет все корни двучленного уравнения степени n. Неизмеримо сложнее обстоит дело в случае общего алгебраического уравнения степени n:
an×Zn + an–1×Zn–1 +...+ a1×Z1 + a0 = 0 (9)
Где an,..., a0 – заданные комплексные числа.
В курсе высшей математики доказывается теорема Гаусса: каждое алгебраическое уравнение имеет в множестве комплексных чисел по крайней мере один корень. Эта теорема была доказана немецким математиком Карлом Гауссом в 1779 году.
Опираясь на теорему Гаусса, можно доказать, что левая часть уравнения 9 всегда может быть представлена в виде произведения:
Где Z1, Z2,..., ZK – некоторые различные комплексные числа,
а a1,a2,...,ak – натуральные числа, причем:
a1 + a2 + ... + ak = n
Отсюда следует, что числа Z1, Z2,..., ZK являются корнями уравнения 9. При этом говорят, что Z1 является корнем кратности a1, Z2 – корнем кратности a2 и так далее.
Если условиться считать корень уравнения столько раз, какова его кратность, то можно сформулировать теорему: каждое алгебраическое уравнение степени n имеет в множестве комплексных чисел ровно n корней.
Теорема Гаусса и только что сформулированная теорема дают решения о существовании корней, но ничего не говорят о том, как найти эти корни. Если корни первой и второй степени могут быть легко найдены, то для уравнений третей и четвертой степеней формулы громоздки, а для уравнений степени выше четвертой таких формул вообще не существует. Отсутствие общего метода не мешает отыскивать все корни уравнения. Для решения уравнения с целыми коэффициентами часто оказывается полезной следующая теорема: целые корни любого алгебраического уравнения с целыми коэффициентами являются делителями свободного члена.
Докажем эту теорему:
Пусть Z = k – целый корень уравнения
an×Zn + an–1×Zn–1 +...+ a1×Z1 + a0 = 0
с целыми коэффициентами. Тогда
an×kn + an–1×kn–1 +...+ a1×k1 + a0 = 0
a0 = – k(an×kn–1 + an–1×kn–2 +...+ a1)
Число в скобках, при сделанных предположениях, очевидно, целое, значит k – делитель числа a0.











