84296 (675711)

Файл №675711 84296 (Иррациональные уравнения и неравенства)84296 (675711)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

МОУ СОШ «УК №20»


Иррациональные

уравнения и неравенства

реферат по алгебре

ученика 11 «В» класса

Торосяна Левона

Руководитель:

Олейникова Р. М.

Сочи 2002г.

Содержание.

  1. Введение

  1. Основные правила

  1. Иррациональные уравнения:

    • Решение иррациональных уравнений стандартного вида.

    • Решение иррациональных уравнений смешанного вида.

    • Решение сложных иррациональных уравнений.

  1. Иррациональные неравенства:

    • Решение иррациональных неравенств стандартного вида.

    • Решение нестандартных иррациональных неравенств.

    • Решение иррациональных неравенств смешанного вида.

  1. Вывод

  1. Список литературы

I. Введение

Я, Торосян Левон, ученик 11 «В» класса, выполнил реферат по теме: «Иррациональные уравнения и неравенства».

Особенностью моей работы является то, что в школьном курсе на решение иррациональных уравнений отводится очень мало времени, а ВУЗовские задания вообще не решаются. Решение иррациональных неравенств в школьном курсе не рассматри- вают, а на вступительных экзаменах эти задания часто дают.

Я самостоятельно изучил правила решения иррациональных уравнений и неравенств.

В реферате показаны решения как иррациональных уравнений и неравенств стандартного типа, так и повышенной сложности. Поэтому реферат можно использовать как учебное пособие для подготовки в ВУЗ, также рефератом можно пользоваться при изучении этой темы на факультативных занятиях.

II. Иррациональные уравнения

Иррациональным называется уравнение, в котором переменная содержится под знаком корня.

Решаются такие уравнения возведением обеих частей в степень. При возведении в четную степень возможно расширение области определения заданного уравнения. Поэтому при решении таких иррациональных уравнений обязательны проверка или нахождение области допустимых значений уравнений. При возведении в нечетную степень обеих частей иррационального уравнения область определения не меняется.

Иррациональные уравнения стандартного вида можно решить пользуясь следующим правилом:

Решение иррациональных уравнений стандартного вида:

а) Решить уравнение = x – 2,

Решение.

= x – 2,

2x – 1 = x2 – 4x + 4, Проверка:

x2 – 6x + 5 = 0, х = 5, = 5 – 2,

x1 = 5, 3 = 3

x2 = 1 – постор. корень х = 1, 1 – 2 ,

Ответ: 5 пост. к. 1 -1.

б) Решить уравнение = х + 4,

Решение.

= х + 4,

Ответ: -1

в) Решить уравнение х – 1 =

Решение.

х – 1 =

х3 – 3х2 + 3х – 1 = х2 – х – 1,

х3 – 4х2 + 4х = 0,

х(х2 – 4х + 4) = 0,

х = 0 или х2 – 4х + 4 = 0,

(х – 2)2 = 0,

х = 2

Ответ: 0; 2.

г) Решить уравнение х – + 4 = 0,

Решение.

х – + 4 = 0,

х + 4 = , Проверка:

х2 + 8х + 16 = 25х – 50, х = 11, 11 – + 4 = 0,

х2 – 17х + 66 = 0, 0 = 0

х1 = 11, х = 6, 6 – + 4 = 0,

х2 = 6. 0 = 0.

Ответ: 6; 11.

Решение иррациональных уравнений смешанного вида:

  • Иррациональные уравнения, содержащие знак модуля:

а) Решить уравнение =

Решение.

= , – +

x

Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:

или


Ответ:

б) Решить уравнение

Решение.

, – +

x

Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:

или

Ответ: .

  • Иррациональные показательные уравнения:

а) Решить уравнение

Решение.

ОДЗ:

Пусть = t, t > 0

Сделаем обратную замену:

= 1/49, или = 7,

= ,

– (ур-ние не имеет решений) x = 3.

Ответ: 3

б) Решить уравнение

Решение.

Приведем все степени к одному основанию 2:

данное уравнение равносильно уравнению:

Ответ: 0,7

  • Иррациональное уравнение, содержащее иррациональность четной степени:

Решить уравнение

Решение.

возведем обе части уравнения в квадрат

3x – 5 – 2

2x – 2 = 2

x –1 =

x Проверка:

x x = 3,

4x 1 = 1.

x = 1,75
Ответ: 3.

  • Иррациональное уравнение, содержащее иррациональность нечетной степени:

Решить уравнение

Решение.

возведем обе части уравнения в куб

но , значит:

возведем обе части уравнения в куб

(25 + x)(3 – x) = 27,

Ответ: –24; 2.

  • Иррациональные уравнения, которые решаются заменой:

а) Решить уравнение

Решение.

Пусть = t, тогда = , где t > 0

t –

Сделаем обратную замену:

= 2, возведем обе части в квадрат

Проверка: x = 2,5

Ответ: 2,5.

б) Решить уравнение

Решение.

Пусть = t, значит = , где t > 0

t + t – 6 = 0,

Сделаем обратную замену:

= 2, возведем обе части уравнения в четвертую степень

x + 8 = 16, Проверка:

x = 8, x = 2,

x = 2. 6 = 6

Ответ: 2.

в) Решить уравнение

Решение.

Пусть = t, где t > 0

Сделаем обратную замену:

= 2, возведем обе части уравнения в квадрат

Проверка:

,

Ответ: –5; 2.

Решение сложных иррациональных уравнений:

  • Иррациональное уравнение, содержащее двойную иррациональность:

Решить уравнение

Решение.

возведем обе части уравнения в куб

возведем обе части уравнения в квадрат

Пусть = t

t 2 11t + 10 = 0,

Сделаем обратную замену: Проверка:

= 10, или = 1, x = ,

x = -пост. корень 0

Ответ: 1. x = 1,

1 = 1

  • Иррациональные логарифмические уравнения:

а) Решить уравнение lg3 + 0,5lg(x – 28) = lg

Решение.

lg3 + 0,5lg(x – 28) = lg ,

lg(3 = lg ,

Учитывая ОДЗ, данное уравнение равносильно системе:

Ответ: 32,75

б) Решить уравнение

Решение.

Ответ: ; – 2; 3.

IV. Иррациональные неравенства

Неравенства называются иррациональными, если его неизвестное входит под знак корня (радикала).

Иррациональное неравенство вида равносильно системе неравенств:

Иррациональное неравенство вида равносильно совокуп-ности двух систем неравенств:

и

Решение иррациональных неравенств стандартного вида:

а) Решить неравенство

Решение.

Данное неравенство равносильно системе неравенств:

+ – +

Ответ: [1; 2). 1 3 x

б) Решить неравенство

Решение.

Данное неравенство равносильно двум системам неравенств:

Ответ:

в) Решить неравенство

Решение.

Данное неравенство равносильно системе неравенств:

Ответ: нет решений

Решение иррациональных неравенств нестандартного вида:

а) Решить неравенство

Решение.

Данное неравенство равносильно системе неравенств:

Ответ:

б) Решить неравенство

Решение.

Данное неравенство равносильно системе неравенств:

Ответ:

  • Решение иррациональных неравенств с помощью правила знаков при умножении и делении:

а) Решить неравенство

Решение.

Учитывая то, что и правило знаков при делении данное неравенство равносильно системе неравенств:

Ответ:

б) Решить неравенство (2x – 5)

Решение.

(2x – 5)

Учитывая то, что и правило знаков при делении данное неравенство равносильно системе неравенств:

Ответ:

  • Решение иррациональных неравенств способом группировки:

Решить неравенство

Решение.

,

сгруппируем по два слагаемых

вынесем общий множитель за скобку

учитывая, что > 0 и правило знаков при умножении данное неравенство равносильно системе неравенств:

Ответ: ( 0; 1 )

  • Иррациональное неравенство, содержащее два знака иррациональности:

Решить неравенство

Решение.

Данное неравенство равносильно системе неравенств:

Ответ:

  • Решение иррациональных неравенств заменой:

Решить неравенство

Решение.

Пусть = t, тогда = , t > 0

Сделаем обратную замену:

возведем в квадрат обе части неравенства

Ответ:

Решение иррациональных неравенств смешанного вида:

  • Иррациональные показательные неравенства:

а) Решить неравенство

Решение.

,

т.к. y = 0,8t , то

0,5x(x – 3) < 2,

0,5x2 – 1,5x – 2 < 0,

x2 – 3x – 4 < 0,

f(x) = x2 – 3x – 4,

ОДЗ , + – +

Н ули функции: x1 = 4; x2 = – 1. –1 4 x

Ответ: х

б) Решить неравенство 4 – 2 < 2 – 32

Решение.

4 – 2 < 2 – 32, ОДЗ: x > 0

2 – 2 2 < 2 24 – 25, выполним группировку слагаемых

2 (2 – 2) – 24(2 –2) < 0,

(2 – 2) (2 – 24) < 0, учитывая правило знаков и ОДЗ данное неравенство равносильно 2-м системам:

или

т.к. y = 2t , то т.к. y = 2t , то

Ответ: х

  • Решение иррациональных логарифмических неравенств:

Решить неравенство

Решение.

уч. ОДЗ данное нер-во равносильно системе нер-ств

Ответ:

V. Вывод

Реферат помог мне научиться решать иррациональные уравнения и неравенства следующих типов: стандартные, показательные, содержащие знак модуля, логарифмические, повышенного уровня.

Примеры взяты и подробно разобраны не только из школьной программы, но и из вступительных экзаменов в школу А.Н. Колмогорова при МГУ, из сборника задач по математике под редакцией М.И. Сканави.

Этот материал может быть интересен и полезен выпуск – никам школ и абитуриентам технических вузов.

VI. Список литературы

  1. Алгебра и начала анализа. Под редакцией А.Н. Колмогорова

  2. 3000 конкурсных задач по математике. Авторы: Е.Д. Куланин, В.П. Норин

  3. Справочные материалы по математике. Авторы: В.А. Гусев, А.Г. Мордкович

  4. Сборник задач по математике. Под редакцией М.И. Сканави

  5. Справочный материал

18


Характеристики

Тип файла
Документ
Размер
692,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее