84269 (675682), страница 3

Файл №675682 84269 (Дедуктивные умозаключения в начальной школе) 3 страница84269 (675682) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Сухомлинский наблюдал за ходом мышления детей, и наблюдения подтвердили, "что прежде всего надо научить детей охватывать мысленным взором ряд предметов, явлений, событий, осмысливать связи между ними… Изучая мышление тугодумов, я все больше убеждался, что неумение осмыслить, например, задачу – следствие: неумение абстрагироваться, отвлекаться от конкретного. Надо научить ребят мыслить абстрактными понятиями"

Проблемой внедрения в школьный курс математики логических задач занимались не только исследователи в области педагогики и психологии, но и математики-методисты. Поэтому при написании работы использовалась специализированная литература, как первого, так и второго направления.

1. 6. Психолого-педагогические особенности младших школьников.

Особенность дедуктивных рассуждений в начальных классах заключается, прежде всего, в их тесной взаимосвязи с индуктивными. Собственно поэтому и создается впечатление, что дедуктивные рассуждения как таковые отсутствуют в курсе математики начальных классов. Здесь дело в том, что для сознательного проведения дедуктивных рассуждений необходима большая подготовительная работа, направленная на сознательное усвоение общего вывода, свойства, закономерности. Этого требуют особенности мышления младшего школьника, которое отличается конкретностью. Но сознательное усвоение общего вывода позволяет пользоваться в дальнейшем дедуктивным рассуждением.

Проанализировав литературу, в которой рассматривается проблема обучения дедуктивным умозаключениям, мы видим, что в ее решении преобладает логический подход, заключающийся в том, что основной акцент делается на исследование логических аспектов дедуктивных умозаключений: сущности дедуктивного умозаключения, его видов, правил вывода, обучения логическим действиям, входящим в процесс дедуктивного умозаключения. Однако, несмотря на обилие работ, и рекомендаций по обучению учащихся дедуктивным умозаключениям, владении ими, соответствующее умение находится на низком уровне, о чем свидетельствуют многочисленные публикации. Основной причиной этому является традиционная методика обучения дедуктивным умозаключениям, которые исходят, главным образом из отождествления дедуктивного умозаключения с его логической формой. Работы В. А. Байдака, М. И. Бурды, Г. Р. Бреслер, С. Т. Обидныка, А. А. Столяра и многих других авторов показывают актуальность проблемы, где предметом исследований является формирование и дальнейшее развитие умения строить дедуктивные умозаключения, умение осуществлять цепочки дедуктивных рассуждений, приемы мышления, адекватные исследуемой проблеме, воспитание потребности в дедуктивных умозаключениях.

«Обучение дедукции, включающее разъяснение простейших схем дедуктивных рассуждений, неявно применяемых в доказательствах, является необходимым условием успешного применения дедукции как метода обучения, метода получения новых знаний».[14]

Среди математиков, методистов и учителей распространены различные точки зрения на обучение школьников дедуктивным умозаключениям. Так, З. И. Слепкань отмечает, что положительный эффект в обучении применению логики и математической символики был обнаружен у способных школьников, а средние и слабые учащиеся по-прежнему плохо рассуждали и решали задачи. Попутно заметим, что лучший результат дает обучение элементам логики наряду с обучением общим умственным действиям (анализ, синтез, обобщение, сравнение, сопоставление) и специфическим действиям.

При изучении данной проблемы учеными были выявлены трудности, возникающие у учащихся при построении дедуктивных умозаключений. Выделяются такие причины как: плохое качество знаний, неумение их применять, неосознанность умственных операций, неумение устанавливать связи между логическими шагами. В качестве средств, устраняющих трудности, предлагается использование приемов:

  1. формулирования общей идеи дедуктивного умозаключения;

  2. мотивации дополнительных построений;

  3. приведения плана дедуктивного умозаключения;

  4. проведения его с опорой на краткую запись;

  5. использования блок-схемы доказательства, таблиц.

Концепция обучения дедуктивному рассуждению заключается не только содержанием понятия «дедуктивное умозаключение», но и целями, которые выдвигаются в связи с их рассмотрением. Несомненно, и то, что ее формирование должно учитывать возрастные особенности школьников. Очевидна зависимость обучения дедукции от содержания обучения математике, от принятой структуры курса, ступеней обучения. Формирование концепции обучения дедукции должно осуществляться с учетом методов обучения, средств и форм обучения математике. Таким образом, обучение дедукции представляет собой сложную систему, структура которой обусловлена многочисленными связями между различными ее составляющими.

Возможность ознакомления школьников с логическими схемами рассуждений в рамках даже ныне действующих учебников математики возросла. Дело в том, что упражнения на распознавание объектов, принадлежащих понятию, выведение следствий из факта принадлежности понятию являются неотъемлемым атрибутом методики формирования математических понятий, а потому «проникли» во все учебники математики.

Рассматривая индивидуальные компоненты логического мышления, мы ставили перед собой задачу выделить те его особенности, от которых зависит легкость овладения однородными знаниями, темп продвижения в них, то есть связывали его с понятием общих способностей. У школьников эти свойства их психики обуславливают успешность учебной деятельности, быстроту и легкость в овладении новыми знаниями, широту их переноса, то есть выступают как их общие способности к учению. Для их обозначения в психологии широко используют термин «обучаемость». Чем выше обучаемость, тем быстрей и легче приобретает человек новые знания, тем свободнее оперирует ими в относительно новых условиях, тем выше, следовательно, и темп его умственного развития.

Логическое мышление предполагает не только широкое использование усвоенных знаний, но и преодоление барьера прошлого опыта, отхода от привычных ходов мысли, разрешение противоречий между актуализированными знаниями и требованиями проблемной ситуации, оригинальность решений, их своеобразие.

Использование дедукции и дедуктивных умозаключений в процесс поиска нового закономерно. Однако чтобы найденные таким образом знания могли быть переданы другим, использованы для решения широкого круга задач, должны быть хорошо осознаны как их существенные признаки, так и способы оперирования этими знаниями. Вот почему одним из основных качеств ума, входящих в обучаемость, мы считаем осознанность своей мыслительной деятельности, возможность сделать ее предметом мысли самого решающего проблему субъекта.

Это качество ума проявляется в возможности выразить в слове или в других символах (в графиках, схемах, моделях) цель и продукт, результат мыслительной деятельности (существенные признаки вновь сформированных понятий, закономерностей), а также те способы, с помощью которых этот результат был найден, выявить ошибочные ходы мысли и их причины, способы их исправления. Неосознанность мыслительной деятельности проявляется в том, что человек не может дать отчета о решении задачи (даже если оно верное), не замечает своих ошибок, не может указать те признаки, на которые он опирался, давая тот или иной ответ.

Внешне хорошо выраженная особенность логического мышления — самостоятельность при приобретении и оперировании новыми знаниями. Это качество ума проявляется в постановке целей, проблем, выдвижении гипотез и самостоятельном решении этих задач, причем существенные индивидуальные различия по этому параметру экспериментально обнаружены уже у младших школьников.

Итак, дедуктивные умозаключения с психолого-педагогической точки зрения играют огромную роль и являются источником и условием развития логического, абстрактного, дедуктивного и эвристического мышления. Велико их значение в формировании и развитии нравственных качеств личности. К моменту поступления ребенка в школу, он может, при правильной методике преподавания, развивать у себя умение строить дедуктивные умозаключения. Именно дедукция является способом систематизации учебного материала. С ее помощью и посредством ее устанавливаются различные связи. Она является средством мотивации и получения обучаемыми новых знаний, развивает важнейшие интеллектуальные и учебные умения. Но для более продуктивной работы, необходимо правильно организовать работу на уроке, используя, по возможности, различные формы работы с математическим материалом.

1. 7. Организация различных форм работы с логическими задачами.

Выше неоднократно утверждалось, что развитие у детей логического мышления – это одна из важных задач начального обучения. Умение мыслить логически, выполнять умозаключения без наглядной опоры, сопоставлять суждения по определенным правилам – необходимое условие успешного усвоения учебного материала.

Основная работа для развития логического мышления должна вестись с задачей. Ведь в любой задаче заложены большие возможности для развития логического мышления. Нестандартные логические задачи – отличный инструмент для такого развития. Конкретные примеры логических задач приведены в приложениях 1 и 2. Однако что зачастую наблюдается на практике? Учащимся предлагается задача, они знакомятся с нею и вместе с учителем анализируют условие и решают ее. Но извлекается ли из такой работы максимум пользы? Нет. Если дать эту задачу через день-два, то часть учащихся может вновь испытывать затруднения при решении.

Наибольший эффект при этом может быть достигнут в результате применения различных форм работы над задачей:

1. Работа над решенной задачей. Многие учащиеся только после повторного анализа осознают план решения задачи. Это путь к выработке твердых знаний по математике.

2. Решение задач различными способами. Мало уделяется внимания решению задач разными способами в основном из-за нехватки времени. А ведь это умение свидетельствует о достаточно высоком математическом развитии. Кроме того, привычка нахождения другого способа решения сыграет большую роль в будущем.

3. Правильно организованный способ анализа задачи - от вопроса или от данных к вопросу.

4. Представление ситуации, описанной в задаче (нарисовать "картинку"). Учитель обращает внимание детей на детали, которые нужно обязательно представить, а которые можно опустить. Мысленное участие в этой ситуации. Разбиение текста задачи на смысловые части. Моделирование ситуации с помощью чертежа, рисунка.

5. Самостоятельное составление задач учащимися.

Составить задачу:

  • используя слова: больше на, столько, сколько, меньше в, на столько больше, на столько меньше;

  • решаемую в 1, 2, 3 действия;

  • по данному ее плану решения, действиям и ответу;

  • по выражению.

6. Решение задач с недостающими данными.

7. Изменение вопроса задачи.

8. Составление различных выражений по данным задачи и объяснение, что означает то или иное выражение. Выбрать те выражения, которые являются ответом на вопрос задачи.

9. Объяснение готового решения задачи.

10. Использование приема сравнения задач и их решений.

11. Запись двух решений на доске - одного верного и другого неверного.

12. Изменение условия задачи так, чтобы задача решалась другим действием.

13. Закончить решение задачи.

14. Какой вопрос и какое действие лишние в решении задачи (или, наоборот, восстановить пропущенный вопрос и действие в задаче).

15. Составление аналогичной задачи с измененными данными.

16. Решение обратных задач.

Систематическое использование на уроках математики и внеурочных занятиях специальных задач и заданий, направленных на развитие логического мышления, организованных согласно приведенной выше схеме, расширяет математический кругозор младших школьников и позволяет более уверенно ориентироваться в простейших закономерностях окружающей их действительности и активнее использовать математические знания в повседневной жизни.





Глава 2.

Практическая часть.

Как уже было сказано во введении теоретической части нашей работы, умение строить дедуктивные рассуждения (умозаключения) является основным методом математической науки и одним из особых средств усвоения курса математики в средней школе. Это отмечает и Г. В. Дорофеев. Он писал: «Ответственность преподавателей математики особенно велика, так как отдельного предмета «логика» в школе нет, и умение логически мыслить и строить правильные умозаключения необходимо развивать с первых «прикосновений» детей к математике. И то, как этот процесс мы сможем внедрить в различные школьные программы, будет зависеть какое поколение придет нам на смену» 4

Именно такая позиция легла в основу постановки и проведения практической части нашей работы.

Тема: Обучение построению дедуктивным умозаключениям при решении задач в 4 классе.

Цель: Подтвердить или опровергнуть гипотезу, выдвинутую в теоретической части данной работы. Разработать задания, которые способствовали бы развитию умения строить дедуктивные умозаключения при решении задач, на примере различного математического материала.

Эксперимент проводился в 4 «А» классе. Количество детей: 14 человек. Девочек – 6. Мальчиков – 8.

Характеристики

Тип файла
Документ
Размер
223,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее